Contaminant Spread and Flushing in Fractured Rocks Near Oak Ridge, Tennessee

Liquid wastes, including metals dissolved in nitric acid, were discharged into the S-3 Ponds from 1951 to 1983. During this period, contaminants in ground water spread along shallow fracture flow paths toward nearby streams. Also, a high concentration of nitrate in one well at a depth of 110 to 240 in shows that some contaminants may have moved downdip because of differences in fluid density. Neutralization of the ponds in June 1983 caused a dramatic decrease in the contaminant concentrations of Bear Creek about three months later. Since then, the contaminant concentrations of Bear Creek have decreased at a first-order exponential rate. This average rate, which is the same for both more reactive and less reactive constituents, can be interpreted to show that the contaminant reservoir consists of the unfractured rock matrix. Flushing caused by the natural recharge and discharge of ground water is occurring at all locations, but contaminant concentrations are controlled by the relative rates of molecular diffusion from the rock matrix and advection along the fracture flow paths. Hushing has thus been most effective near the water table. If the exponential decrease in contaminant concentrations continues, water in Bear Creek will meet drinking water standards by 2012: regardless of any remedial action, contaminants will remain in the rocks for many years.