Anle138b interaction in α-synuclein aggregates by dynamic nuclear polarization NMR.

[1]  Dan Li,et al.  Conformational change of α-synuclein fibrils in cerebrospinal fluid from different clinical phases of Parkinson's disease. , 2022, Structure.

[2]  D. Dickson,et al.  Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro , 2022, Nature Communications.

[3]  A. Murzin,et al.  Structures of α-synuclein filaments from human brains with Lewy pathology , 2022, Nature.

[4]  B. L. de Groot,et al.  The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils , 2022, Nature Communications.

[5]  James A. Geraets,et al.  The 3D structure of lipidic fibrils of α-synuclein , 2022, bioRxiv.

[6]  A. A. Shcherbakov,et al.  From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. , 2021, Chemical reviews.

[7]  M. Baldus,et al.  Highly Efficient Trityl-nitroxide Biradicals for Biomolecular High-field Dynamic Nuclear Polarization. , 2021, Chemistry.

[8]  S. Becker,et al.  Proton Detected Solid-State NMR of Membrane Proteins at 28 Tesla (1.2 GHz) and 100 kHz Magic-Angle Spinning , 2021, Biomolecules.

[9]  S. Becker,et al.  Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes , 2021, Science Advances.

[10]  M. Goedert,et al.  Seeded assembly in vitro does not replicate the structures of α‐synuclein filaments from multiple system atrophy , 2021, FEBS open bio.

[11]  L. Andreas,et al.  Transferred-Rotational-Echo Double Resonance , 2021, The journal of physical chemistry. A.

[12]  A. Landau,et al.  [11C]MODAG-001—towards a PET tracer targeting α-synuclein aggregates , 2020, European Journal of Nuclear Medicine and Molecular Imaging.

[13]  M. Baldus,et al.  Postmodification via Thiol-click Chemistry Yields Hydrophilic Trityl-nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. , 2020, The journal of physical chemistry. B.

[14]  J. R. Long,et al.  Dynamic Nuclear Polarization of Biomembrane Assemblies , 2020, Biomolecules.

[15]  M. Aichler,et al.  Mapping the Binding Interface of PET Tracer Molecules and Alzheimer Disease Aβ Fibrils by Using MAS Solid‐State NMR Spectroscopy , 2020, Chembiochem : a European journal of chemical biology.

[16]  A. Murzin,et al.  Structures of α-synuclein filaments from multiple system atrophy , 2020, Nature.

[17]  S. Maji,et al.  α-Synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis. , 2019, Biochimica et biophysica acta. Proteins and proteomics.

[18]  D. Sulzer,et al.  The physiological role of α‐synuclein and its relationship to Parkinson’s Disease , 2019, Journal of neurochemistry.

[19]  S. Ziegler,et al.  Late-stage Anle138b treatment ameliorates tau pathology and metabolic decline in a mouse model of human Alzheimer’s disease tau , 2019, Alzheimer's Research & Therapy.

[20]  A. Giese,et al.  Cardiolipin Promotes Pore-Forming Activity of Alpha-Synuclein Oligomers in Mitochondrial Membranes. , 2019, ACS chemical neuroscience.

[21]  K. Bötzel,et al.  Iron-mediated aggregation and toxicity in a novel neuronal cell culture model with inducible alpha-synuclein expression , 2019, Scientific Reports.

[22]  J. Dalley,et al.  Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson’s disease model , 2019, Acta Neuropathologica.

[23]  H. Heise,et al.  Hyperpolarized MAS NMR of unfolded and misfolded proteins. , 2019, Solid state nuclear magnetic resonance.

[24]  A. Murzin,et al.  Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules , 2019, Nature.

[25]  B. Meier,et al.  Protein sample preparation for solid-state NMR investigations. , 2019, Progress in nuclear magnetic resonance spectroscopy.

[26]  A. Giese,et al.  Anle138b modulates α‐synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy , 2018, Movement disorders : official journal of the Movement Disorder Society.

[27]  Sarika Mehra,et al.  The Familial α-Synuclein A53E Mutation Enhances Cell Death in Response to Environmental Toxins Due to a Larger Population of Oligomers. , 2018, Biochemistry.

[28]  B. Strodel,et al.  DNP-Enhanced MAS NMR: A Tool to Snapshot Conformational Ensembles of α-Synuclein in Different States , 2018, Biophysical journal.

[29]  M. Goedert,et al.  Tau Filaments and the Development of Positron Emission Tomography Tracers , 2018, Front. Neurol..

[30]  G. Eichele,et al.  The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology , 2017, EMBO molecular medicine.

[31]  W. Zinth,et al.  Photophysics of diphenyl-pyrazole compounds in solutions and α-synuclein aggregates. , 2017, Biochimica et biophysica acta. General subjects.

[32]  R. Riek,et al.  Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore. , 2017, ACS chemical neuroscience.

[33]  C. Dobson,et al.  Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers , 2017, Science.

[34]  B. Meier,et al.  The conformation of the Congo-red ligand bound to amyloid fibrils HET-s(218–289): a solid-state NMR study , 2017, Journal of Biomolecular NMR.

[35]  M. Caporini,et al.  Efficient cross-effect dynamic nuclear polarization without depolarization in high-resolution MAS NMR† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02199b , 2017, Chemical science.

[36]  B. L. de Groot,et al.  Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation. , 2017, ACS chemical neuroscience.

[37]  R. Wade-Martins,et al.  Alpha-synuclein oligomers: a new hope , 2017, Acta Neuropathologica.

[38]  C. Dobson,et al.  Structural Ensembles of Membrane-bound α-Synuclein Reveal the Molecular Determinants of Synaptic Vesicle Affinity , 2016, Scientific Reports.

[39]  I. Sergeyev,et al.  Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location , 2016, Journal of Biomolecular NMR.

[40]  S. Remy,et al.  Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies , 2015, Acta Neuropathologica.

[41]  R. Griffin,et al.  Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals. , 2015, Angewandte Chemie.

[42]  B. Reif,et al.  Structural Mechanism of the Interaction of Alzheimer Disease Aβ Fibrils with the Non-steroidal Anti-inflammatory Drug (NSAID) Sulindac Sulfide* , 2015, The Journal of Biological Chemistry.

[43]  W. Zinth,et al.  Anle138b and related compounds are aggregation specific fluorescence markers and reveal high affinity binding to α-synuclein aggregates. , 2015, Biochimica et biophysica acta.

[44]  Subhradip Paul,et al.  Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization. , 2015, Physical chemistry chemical physics : PCCP.

[45]  Daniel Lee,et al.  Is solid-state NMR enhanced by dynamic nuclear polarization? , 2015, Solid state nuclear magnetic resonance.

[46]  R. Riek,et al.  Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation , 2015, Scientific Reports.

[47]  H. Oschkinat,et al.  Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization. , 2015, Journal of magnetic resonance.

[48]  R. Tycko,et al.  Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves. , 2014, The Journal of chemical physics.

[49]  Michele Vendruscolo,et al.  Direct Observation of the Three Regions in α-Synuclein that Determine its Membrane-Bound Behaviour , 2014, Nature Communications.

[50]  K. Bötzel,et al.  The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset , 2014, Acta Neuropathologica.

[51]  R. Griffin,et al.  Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions. , 2013, Journal of magnetic resonance.

[52]  M. Rosay,et al.  Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. , 2013, Angewandte Chemie.

[53]  R. Griffin,et al.  Dynamic nuclear polarization study of inhibitor binding to the M2(18-60) proton transporter from influenza A. , 2013, Biochemistry.

[54]  P. Tavan,et al.  Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease , 2013, Acta Neuropathologica.

[55]  J. Zweier,et al.  Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals. , 2013, Journal of the American Chemical Society.

[56]  A. O. Andrighetti,et al.  Alpha-synuclein pore forming activity upon membrane association. , 2012, Biochimica et biophysica acta.

[57]  K. Bötzel,et al.  Single-Channel Electrophysiology Reveals a Distinct and Uniform Pore Complex Formed by α-Synuclein Oligomers in Lipid Membranes , 2012, PloS one.

[58]  Andreas Hunkeler,et al.  A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. , 2012, Angewandte Chemie.

[59]  S. Hornemann,et al.  The amyloid-Congo red interface at atomic resolution. , 2011, Angewandte Chemie.

[60]  G. Britton,et al.  Targeting oligomers in neurodegenerative disorders: lessons from α-synuclein, tau, and amyloid-β peptide. , 2011, Journal of Alzheimer's disease : JAD.

[61]  M. Groenning,et al.  Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status , 2010, Journal of chemical biology.

[62]  R. Benz,et al.  Structural properties of pore-forming oligomers of alpha-synuclein. , 2009, Journal of the American Chemical Society.

[63]  H. Jäckle,et al.  Pre‐fibrillar α‐synuclein variants with impaired β‐structure increase neurotoxicity in Parkinson's disease models , 2009, The EMBO journal.

[64]  V. Uversky,et al.  Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein. , 2008, Journal of molecular biology.

[65]  N. D. Kurur,et al.  Swept‐frequency two‐pulse phase modulation (SWf‐TPPM) sequences with linear sweep profile for heteronuclear decoupling in solid‐state NMR , 2008, Magnetic resonance in chemistry : MRC.

[66]  R. Griffin,et al.  High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR , 2008, Applied magnetic resonance.

[67]  C. Rienstra,et al.  High-performance solvent suppression for proton detected solid-state NMR. , 2008, Journal of magnetic resonance.

[68]  C. Ross,et al.  Single Particle Characterization of Iron-induced Pore-forming α-Synuclein Oligomers* , 2008, Journal of Biological Chemistry.

[69]  Y. Ishii,et al.  Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid , 2007, Nature Structural &Molecular Biology.

[70]  Armin Giese,et al.  Different Species of α-Synuclein Oligomers Induce Calcium Influx and Seeding , 2007, The Journal of Neuroscience.

[71]  R. Griffin,et al.  Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. , 2006, Journal of the American Chemical Society.

[72]  A. Donald,et al.  The binding of thioflavin-T to amyloid fibrils: localisation and implications. , 2005, Journal of structural biology.

[73]  P. Lansbury,et al.  Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. , 2002, Journal of molecular biology.

[74]  M. Kirkitadze,et al.  Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies , 2002, Journal of neuroscience research.

[75]  M. Baldus,et al.  Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. , 2002, Journal of the American Chemical Society.

[76]  C. Jaroniec,et al.  3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. , 2002, Journal of the American Chemical Society.

[77]  C. Dobson,et al.  Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases , 2002, Nature.

[78]  C. Jaroniec,et al.  Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate (13)C-(15)N distance measurements in uniformly (13)C,(15)N-labeled peptides. , 2001, Journal of the American Chemical Society.

[79]  R. Griffin,et al.  Sensitivity-enhanced NMR of biological solids: dynamic nuclear polarization of Y21M fd bacteriophage and purple membrane. , 2001, Journal of the American Chemical Society.

[80]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[81]  C. Rienstra,et al.  Measurement of 13C−15N Distances in Uniformly 13C Labeled Biomolecules: J-Decoupled REDOR , 1999 .

[82]  J. M. Griffiths,et al.  Homonuclear radio frequency-driven recoupling in rotating solids , 1998 .

[83]  L. Serpell,et al.  Common core structure of amyloid fibrils by synchrotron X-ray diffraction. , 1997, Journal of molecular biology.

[84]  J. Schaefer,et al.  REDOR dephasing by multiple spins in the presence of molecular motion. , 1997, Journal of magnetic resonance.

[85]  Douglas C. Maus,et al.  Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. , 1997, Science.

[86]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .