A 4D tomographic ionospheric model to support PPP-RTK
暂无分享,去创建一个
P. J. G. Teunissen | G. Olivares-Pulido | M. Terkildsen | K. Arsov | A. Khodabandeh | V. Janssen | P. Teunissen | M. Terkildsen | A. Khodabandeh | V. Janssen | G. Olivares-Pulido | K. Arsov
[1] J. Zumberge,et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .
[2] Manuel Hernández-Pajares,et al. A Review of Higher Order Ionospheric Refraction Effects on Dual Frequency GPS , 2011 .
[3] Norbert Jakowski,et al. Comparative testing of four ionospheric models driven with GPS measurements , 2011 .
[4] Robert F. Stengel,et al. Optimal Control and Estimation , 1994 .
[5] Burkhard Schaffrin,et al. Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets , 2005 .
[6] Peter Teunissen,et al. GPS for geodesy , 1996 .
[7] Andrzej Krankowski,et al. Methodology and consistency of slant and vertical assessments for ionospheric electron content models , 2017, Journal of Geodesy.
[8] Peter Teunissen,et al. An analytical study of PPP-RTK corrections: precision, correlation and user-impact , 2015, Journal of Geodesy.
[9] Manuel Hernández-Pajares,et al. The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques , 2011 .
[10] C. K. Shum,et al. Regional 4-D modeling of the ionospheric electron density , 2008 .
[11] Simon Banville,et al. Improved convergence for GNSS precise point positioning , 2014 .
[12] C. Mayer,et al. Ionospheric impact on GNSS signals , 2008 .
[13] Jacek Paziewski,et al. Impact and Implementation of Higher‐Order Ionospheric Effects on Precise GNSS Applications , 2017 .
[14] O. Montenbruck,et al. Springer Handbook of Global Navigation Satellite Systems , 2017 .
[15] Baocheng Zhang,et al. PPP-RTK by means of S-system theory: Australian network and user demonstration , 2017 .
[16] G. V. Haines. Computer programs for spherical cap harmonic analysis of potential and general fields , 1988 .
[17] Peter Teunissen,et al. Review and principles of PPP-RTK methods , 2015, Journal of Geodesy.
[18] Michael Schmidt,et al. Wavelet modelling in support of IRI , 2005 .
[19] M. Hernández‐Pajares,et al. Second-order ionospheric term in GPS : Implementation and impact on geodetic estimates , 2007 .
[20] Denise Dettmering,et al. Comparison of spherical harmonic and B spline models for the vertical total electron content , 2011 .
[21] Mioara Mandea,et al. Wavelet frames: an alternative to spherical harmonic representation of potential fields , 2004 .
[22] S. Schaer. Mapping and predicting the Earth's ionosphere using the Global Positioning System. , 1999 .
[23] P. T. Jayachandran,et al. Determining receiver biases in GPS-derived total electron content in the auroral oval and polar cap region using Ionosonde measurements , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.
[24] D. Odijk. Fast precise GPS positioning in the presence of ionospheric delays , 2002 .
[25] David Salesin,et al. Wavelets for computer graphics: a primer. 2 , 1995, IEEE Computer Graphics and Applications.
[26] Guanyi Ma,et al. Derivation of TEC and estimation of instrumental biases from GEONET in Japan , 2002 .
[27] Matt A. King,et al. A first look at the effects of ionospheric signal bending on a globally processed GPS network , 2010 .
[28] David Salesin,et al. Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.
[29] Wu Chen,et al. Revisit the calibration errors on experimental slant total electron content (TEC) determined with GPS , 2018, GPS Solutions.
[30] Baocheng Zhang,et al. Three methods to retrieve slant total electron content measurements from ground‐based GPS receivers and performance assessment , 2016 .
[31] Jaume Sanz,et al. New approaches in global ionospheric determination using ground GPS data , 1999 .