Qubit placement to minimize communication overhead in 2D quantum architectures

Regular, local-neighbor topologies of quantum architectures restrict interactions to adjacent qubits, which in turn increases the latency of quantum circuits mapped to these architectures. To alleviate this effect, optimization methods that consider qubit-to-qubit interactions in 2D grid architectures are presented in this paper. The proposed approaches benefit from Mixed Integer Programming (MIP) formulation for the qubit placement problem. Simulation results on various benchmarks show 27% on average reduction in communication overhead between qubits compared to best results of previous work.

[1]  Jin Hu,et al.  Progress and Challenges in VLSI Placement Research , 2012, Proceedings of the IEEE.

[2]  Yasuhiro Takahashi,et al.  The quantum fourier transform on a linear nearest neighbor architecture , 2007, Quantum Inf. Comput..

[3]  Krysta Marie Svore,et al.  A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..

[4]  Alireza Shafaei,et al.  Constant-Factor Optimization of Quantum Adders on 2D Quantum Architectures , 2013, RC.

[5]  Dmitri Maslov,et al.  Quantum Circuit Placement , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[7]  Stavros S. Cosmadakis,et al.  The Complexity of Minimizing Wire Lengths in VLSI Layouts , 1987, Inf. Process. Lett..

[8]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[9]  Behrooz Parhami,et al.  Introduction to Parallel Processing: Algorithms and Architectures , 1999 .

[10]  Rodney Van Meter,et al.  A Θ( √ n)-depth quantum adder on the 2D NTC quantum computer architecture , 2010, JETC.

[11]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[12]  P.O. Boykin,et al.  Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication , 2006, IEEE Transactions on Nanotechnology.

[13]  L. Kaufman,et al.  An algorithm for the quadratic assignment problem using Bender's decomposition , 1978 .

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[16]  A. Fowler,et al.  Quantum-error correction on linear-nearest-neighbor qubit arrays , 2003, quant-ph/0311116.

[17]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[18]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[19]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[20]  Alireza Shafaei,et al.  Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[21]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[22]  Robert Wille,et al.  Synthesis of quantum circuits for linear nearest neighbor architectures , 2011, Quantum Inf. Process..

[23]  Samuel Kutin,et al.  Computation at a Distance , 2007, Chic. J. Theor. Comput. Sci..

[24]  Masaki Nakanishi,et al.  An efficient conversion of quantum circuits to a linear nearest neighbor architecture , 2011, Quantum Inf. Comput..

[25]  corporateName,et al.  Design Automation Conference (DAC) 2013 , 2013 .

[26]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.