Visualizing the Variability of Gradients in Uncertain 2D Scalar Fields

In uncertain scalar fields where data values vary with a certain probability, the strength of this variability indicates the confidence in the data. It does not, however, allow inferring on the effect of uncertainty on differential quantities such as the gradient, which depend on the variability of the rate of change of the data. Analyzing the variability of gradients is nonetheless more complicated, since, unlike scalars, gradients vary in both strength and direction. This requires initially the mathematical derivation of their respective value ranges, and then the development of effective analysis techniques for these ranges. This paper takes a first step into this direction: Based on the stochastic modeling of uncertainty via multivariate random variables, we start by deriving uncertainty parameters, such as the mean and the covariance matrix, for gradients in uncertain discrete scalar fields. We do not make any assumption about the distribution of the random variables. Then, for the first time to our best knowledge, we develop a mathematical framework for computing confidence intervals for both the gradient orientation and the strength of the derivative in any prescribed direction, for instance, the mean gradient direction. While this framework generalizes to 3D uncertain scalar fields, we concentrate on the visualization of the resulting intervals in 2D fields. We propose a novel color diffusion scheme to visualize both the absolute variability of the derivative strength and its magnitude relative to the mean values. A special family of circular glyphs is introduced to convey the uncertainty in gradient orientation. For a number of synthetic and real-world data sets, we demonstrate the use of our approach for analyzing the stability of certain features in uncertain 2D scalar fields, with respect to both local derivatives and feature orientation.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  Megan Sorenson,et al.  Library , 1958 .

[3]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[4]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[5]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[6]  Alex T. Pang,et al.  Visualizing scalar volumetric data with uncertainty , 2002, Comput. Graph..

[7]  T. Hengl,et al.  Visualisation of uncertainty using the HSI colour model : computations with colours , 2003 .

[8]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[9]  Robert S. Laramee,et al.  Uncertainty Visualization Methods in Isosurface Rendering , 2003, Eurographics.

[10]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[11]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[12]  Ross Brown Animated visual vibrations as an uncertainty visualisation technique , 2004, GRAPHITE '04.

[13]  Robert Michael Kirby,et al.  Display of vector fields using a reaction-diffusion model , 2004, IEEE Visualization 2004.

[14]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[15]  Mark Gahegan,et al.  A typology for visualizing uncertainty , 2005, IS&T/SPIE Electronic Imaging.

[16]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[17]  Mark Gahegan,et al.  Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know , 2005 .

[18]  Daniel Weiskopf,et al.  Texture-based visualization of uncertainty in flow fields , 2005, VIS 05. IEEE Visualization, 2005..

[19]  Heidrun Schumann,et al.  The Visualization of Uncertain Data: Methods and Problems , 2006, SimVis.

[20]  Chi-Wing Fu,et al.  Visualizing Large-Scale Uncertainty in Astrophysical Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Anders Ynnerman,et al.  Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  M. Sheelagh T. Carpendale,et al.  Exploration of uncertainty in bidirectional vector fields , 2008, Electronic Imaging.

[23]  Luc Anselin,et al.  Visualizing Seismic Risk and Uncertainty , 2008, Annals of the New York Academy of Sciences.

[24]  Ken Brodlie,et al.  Uncertain Flow Visualization using LIC , 2009, TPCG.

[25]  Kenneth Moreland,et al.  Diverging Color Maps for Scientific Visualization , 2009, ISVC.

[26]  Björn Zehner,et al.  Visualization of gridded scalar data with uncertainty in geosciences , 2010, Comput. Geosci..

[27]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[28]  Min Chen,et al.  Evaluating the impact of task demands and block resolution on the effectiveness of pixel-based visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  Lijie Xu,et al.  An Information-Theoretic Framework for Flow Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[30]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[31]  Hans-Christian Hege,et al.  Probabilistic Marching Cubes , 2011, Comput. Graph. Forum.

[32]  Hans-Christian Hege,et al.  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[34]  Holger Theisel,et al.  Uncertain topology of 3D vector fields , 2011, 2011 IEEE Pacific Visualization Symposium.

[35]  Holger Theisel,et al.  Closed stream lines in uncertain vector fields , 2011, SCC.

[36]  Rüdiger Westermann,et al.  Visualizing the Positional and Geometrical Variability of Isosurfaces in Uncertain Scalar Fields , 2011, Comput. Graph. Forum.

[37]  Holger Theisel,et al.  Vortex Analysis in Uncertain Vector Fields , 2012, Comput. Graph. Forum.

[38]  J. Trampert,et al.  Seismic and mineralogical structures of the lower mantle from probabilistic tomography , 2012 .

[39]  Hans-Christian Hege,et al.  Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation , 2012, Comput. Graph. Forum.

[40]  Rüdiger Westermann,et al.  Visualization of Global Correlation Structures in Uncertain 2D Scalar Fields , 2012, Comput. Graph. Forum.

[41]  D. Xiu,et al.  VISUALIZATION OF COVARIANCE AND CROSS-COVARIANCE FIELDS , 2013 .

[42]  Rüdiger Westermann,et al.  CORRELATION VISUALIZATION FOR STRUCTURAL UNCERTAINTY ANALYSIS , 2013 .