Intensity interferometry-based 3D imaging

The development of single-photon counting detectors and arrays has made tremendous steps in recent years, not the least because of various new applications in, e.g., LIDAR devices. In this work, a 3D imaging device based on real thermal light intensity interferometry is presented. By using gated SPAD technology, a basic 3D scene is imaged in reasonable measurement time. Compared to conventional approaches, the proposed synchronized photon counting allows using more light modes to enhance 3D ranging performance. Advantages like robustness to atmospheric scattering or autonomy by exploiting external light sources can make this ranging approach interesting for future applications.

[1]  Edoardo Charbon,et al.  Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications , 2019, Optica.

[2]  Prasanna Rangarajan,et al.  High Resolution Non-Line-of-Sight Imaging with Superheterodyne Remote Digital Holography , 2019, Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP).

[3]  Elliott P. Horch,et al.  Intensity Interferometry for the 21ST Century , 2013 .

[4]  Diego Gutierrez,et al.  Non-line-of-sight imaging using phasor-field virtual wave optics , 2018, Nature.

[5]  A. Godard,et al.  Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[6]  R. H. Brown,et al.  The Angular Diameters of 32 Stars , 1974 .

[7]  Nicolas Produit,et al.  Astro2020 White Paper State of the Profession: Intensity Interferometry , 2019, 1907.13181.

[8]  E. Charbon,et al.  A 512 × 512 SPAD Image Sensor With Integrated Gating for Widefield FLIM , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Laura Waller,et al.  DiffuserCam: Lensless Single-exposure 3D Imaging , 2017, ArXiv.

[10]  R. Lange,et al.  Solid-state time-of-flight range camera , 2001 .

[11]  Matteo Perenzoni,et al.  A Range Image Sensor Based on 10-μm Lock-In Pixels in 0.18-μm CMOS Imaging Technology , 2011, IEEE J. Solid State Circuits.

[12]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[13]  Guihua Zeng,et al.  Thermal-light-based ranging using second-order coherence. , 2012, Applied optics.

[14]  Adrian Sinclair,et al.  Single-photon intensity interferometry (SPIIFY): Utilizing available telescopes , 2017 .

[15]  R. H. Brown,et al.  A Test of a New Type of Stellar Interferometer on Sirius , 1956, Nature.

[16]  Ling-An Wu,et al.  Lensless ghost imaging with sunlight. , 2014, Optics letters.

[17]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[18]  S. Foix,et al.  Lock-in Time-of-Flight (ToF) Cameras: A Survey , 2011, IEEE Sensors Journal.

[19]  J. Holder,et al.  Optical Intensity Interferometry with Atmospheric Cerenkov Telescope Arrays , 2006, astro-ph/0608305.

[20]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[21]  R. Glauber Quantum Theory of Optical Coherence , 2006 .

[22]  E. Charbon,et al.  A quantum imager for intensity correlated photons , 2008, 0807.3025.

[23]  Sebastian Thrun,et al.  Towards fully autonomous driving: Systems and algorithms , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[24]  R. Collins,et al.  Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting. , 2009, Applied optics.

[25]  D. Kieda,et al.  Augmentation of VERITAS Telescopes for Stellar Intensity Interferometry , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[26]  Prasanna Rangarajan,et al.  Mega-pixel time-of-flight imager with GHz modulation frequencies , 2019, Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP).

[27]  Christian Kurtsiefer,et al.  Optical Intensity Interferometry through Atmospheric Turbulence , 2015, 1512.08649.

[28]  M. Fox Quantum Optics: An Introduction , 2006 .

[29]  Andreas Pscherer,et al.  Simulating the photon stream of a real thermal light source. , 2018, Applied optics.

[30]  R. A. Minard,et al.  The Sydney University Stellar Interferometer — I. The instrument , 1999 .

[31]  Elliott P. Horch,et al.  Stellar photon correlation detection with the Southern Connecticut stellar interferometer , 2018, Astronomical Telescopes + Instrumentation.

[32]  Yannick Caulier Inspection of complex surfaces by means of structured light patterns. , 2010, Optics express.

[33]  Zhao Jiankang,et al.  Distance Ranging Based on Quantum Entanglement , 2013 .

[34]  D. Faccio,et al.  Quantum illumination imaging with a single-photon avalanche diode camera , 2020, 2007.16037.

[35]  Yasutomi Keita,et al.  A Time-of-Flight Image Sensor with Sub-mm Resolution Using Draining-Only Modulation Pixels , 2013 .

[36]  Franz J. T. Huber,et al.  3D body scanning with "Flying Triangulation" , 2011 .

[37]  Prasanna Rangarajan,et al.  Synthetic Wavelength Holography: An Extension of Gabor's Holographic Principle to Imaging with Scattered Wavefronts , 2019, 1912.11438.

[38]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[39]  Angelo Gulinatti,et al.  Fully Integrated Active Quenching Circuit Driving Custom-Technology SPADs With 6.2-ns Dead Time , 2019, IEEE Photonics Technology Letters.

[40]  G. Labeyrie,et al.  Temporal intensity interferometry: photon bunching in three bright stars , 2017, 1708.06119.

[41]  R. Canestrari,et al.  Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors , 2013, Optics & Photonics - Optical Engineering + Applications.

[42]  Florian Willomitzer,et al.  Single-shot 3D motion picture camera with a dense point cloud. , 2017, Optics express.

[43]  Giuliano Scarcelli,et al.  Distant Clock Synchronization Using Entangled Photon Pairs , 2004 .

[44]  D. Malyshev,et al.  LED as laboratory test source for astronomical intensity interferometry. , 2020, Optics express.

[45]  Martin Schaffer,et al.  3D shape measurement of static and moving objects with adaptive spatiotemporal correlation. , 2014, Applied optics.

[46]  S. Oppel,et al.  An optical multimode fiber as pseudothermal light source , 2016, 1611.09161.

[47]  D. Dravins,et al.  Long-baseline optical intensity interferometry: Laboratory demonstration of diffraction-limited imaging , 2015, 1506.05804.