Simple Binary Ovonic Threshold Switching Material SiTe and Its Excellent Selector Performance for High-Density Memory Array Application

In this letter, simple binary Ovonic threshold switching (OTS) material with outstanding selector device performance has been demonstrated. Even with its simple material composition and easy fabrication process, the selector device with the binary OTS material showed excellent selector performance such as high-OFF resistance (> 1 G <inline-formula> <tex-math notation="LaTeX">$\Omega $ </tex-math></inline-formula> at 0.1 V), low-ON resistance (< 1 k <inline-formula> <tex-math notation="LaTeX">$\Omega $ </tex-math></inline-formula> at 2.0 V), extremely sharp switching slope (< 1 mV/dec), fast operating speed (<inline-formula> <tex-math notation="LaTeX">$\text{t}_{\mathrm {transition}} <2$ </tex-math></inline-formula> ns, <inline-formula> <tex-math notation="LaTeX">$\text{t}_{\mathrm {delay}} <7$ </tex-math></inline-formula> ns), high endurance (> 10<sup>8</sup> cycles of 150 ns pulse), high electrical stability (> 1 ks at 1.2 V), and high thermal stability (> 400 °C / 30 min). Furthermore, conduction mechanism of the OTS has been explained by Poole-Frenkel-based analytical modeling.

[1]  C. Lam,et al.  Reliability study of a 128Mb phase change memory chip implemented with doped Ga-Sb-Ge with extraordinary thermal stability , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[2]  D. Ielmini,et al.  Understanding cycling endurance in perpendicular spin-transfer torque (p-STT) magnetic memory , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[3]  H. L. Lung,et al.  ALD-based confined PCM with a metallic liner toward unlimited endurance , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[4]  Rainer Waser,et al.  Multidimensional Simulation of Threshold Switching in NbO2 Based on an Electric Field Triggered Thermal Runaway Model , 2016 .

[5]  Kee-Won Kwon,et al.  Full chip integration of 3-d cross-point ReRAM with leakage-compensating write driver and disturbance-aware sense amplifier , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[6]  Hyunsang Hwang,et al.  Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications , 2016, 2016 IEEE Symposium on VLSI Technology.

[7]  B. Govoreanu,et al.  Advanced a-VMCO resistive switching memory through inner interface engineering with wide (>102) on/off window, tunable μA-range switching current and excellent variability , 2016, 2016 IEEE Symposium on VLSI Technology.

[8]  H. Barnaby,et al.  Volatile and Non-Volatile Switching in Cu-SiO2 Programmable Metallization Cells , 2016, IEEE Electron Device Letters.

[9]  Ronald Tetzlaff,et al.  Physical model of threshold switching in NbO2 based memristors , 2015 .

[10]  H. Hwang,et al.  Improved threshold switching characteristics of multi-layer NbOx for 3-D selector application , 2015 .

[11]  S. Jo,et al.  Cross-Point Resistive RAM Based on Field-Assisted Superlinear Threshold Selector , 2015, IEEE Transactions on Electron Devices.

[12]  H. Hwang,et al.  Electrical and reliability characteristics of a scaled (∼30nm) tunnel barrier selector (W/Ta2O5/TaOx/TiO2/TiN) with excellent performance (JMAX > 107A/cm2) , 2014, Symposium on VLSI Technology.

[13]  U-In Chung,et al.  Performance of threshold switching in chalcogenide glass for 3D stackable selector , 2013, 2013 Symposium on VLSI Technology.

[14]  K. Gopalakrishnan,et al.  Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[15]  Stephen J. Hudgens,et al.  Invited paper: Thin-film Ovonic threshold switch: Its operation and application in modern integrated circuits , 2012, Electronic Materials Letters.

[16]  Matthias Wuttig,et al.  Nanosecond threshold switching of GeTe6 cells and their potential as selector devices , 2012 .

[17]  Jong-Ho Lee,et al.  Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory , 2012 .

[18]  F. Rao,et al.  Investigation of changes in band gap and density of localized states on phase transition for Ge2Sb2Te5 and Si3.5Sb2Te3 materials , 2012 .

[19]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[20]  Winfried W. Wilcke,et al.  Storage-class memory: The next storage system technology , 2008, IBM J. Res. Dev..

[21]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[22]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[23]  H. Fritzsche Why are chalcogenide glasses the materials of choice for Ovonic switching devices , 2007 .

[24]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[25]  D. Adler,et al.  Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors , 1976 .

[26]  S. Ovshinsky An Introduction to Ovonic Research , 1970 .