On Thermomechanics of a Nonlinear Heat Conducting Suspension

In this short paper, we discuss and provide constitutive relations for the stress tensor and the heat flux vector for a nonlinear density-gradient dependent (Korteweg-type) fluid. Specifically, we attempt to present a unified thermo-mechanical approach to the two models given in papers of Massoudi (International Journal of Non-Linear Mechanics, 2001, 36(1), pp. 25–37.) and Massoudi (Mathematical Methods in the Applied Sciences, 2006, 29(13), pp. 1599–1613.) where the entropy law is used and restrictions are also obtained on the constitutive parameters. In most thermomechanical studies of nonlinear fluids using the entropy law, the stress tensor is assumed to be nonlinear and the heat flux vector still has the form of the Fourier type, i.e., it is proportional to the temperature gradient. In this paper, we use a generalized (nonlinear) form for the heat flux vector. When our model is linearized we obtain constraints, due to the entropy inequality, which are in agreement with the earlier results.

[1]  Mehrdad Massoudi,et al.  On the heat flux vector for flowing granular materials—part II: derivation and special cases , 2006 .

[2]  A.J.M. Spencer,et al.  Theory of invariants , 1971 .

[3]  J. E. Dunn,et al.  On the Thermodynamics of Interstitial Working , 1983 .

[4]  R. L. Braun,et al.  Stress calculations for assemblies of inelastic speres in uniform shear , 1986 .

[5]  K. Hutter,et al.  Important aspects in the formulation of solid–fluid debris-flow models. Part I. Thermodynamic implications , 2010 .

[6]  Leonard Eugene Dickson,et al.  A Theory of Invariants , 1909 .

[7]  Mehrdad Massoudi,et al.  Flow of a generalized second grade fluid between heated plates , 1993 .

[8]  A. Spencer Continuum Mechanics , 1967, Nature.

[9]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[10]  A. D. Kirwan,et al.  On Objectivity, Irreversibility and Non-Newtonian Fluids , 2016 .

[11]  Peter Kuster,et al.  Principles Of Heat Transfer In Porous Media , 2016 .

[12]  Mehrdad Massoudi,et al.  Conservation laws and constitutive relations for density-gradient-dependent viscous fluids , 2005 .

[13]  J. Murali Krishnan,et al.  Rheology of complex fluids , 2010 .

[14]  J. E. Dunn,et al.  On the Thermomechanics of Interstitial Working , 1985 .

[15]  Liqiu Wang Vector-field theory of heat flux in convective heat transfer , 2001 .

[16]  K. Rajagopal,et al.  A thermodynamic frame work for rate type fluid models , 2000 .

[17]  T. N. Narasimhan Fourier’s heat conduction equation: History, influence, and connections , 1999 .

[18]  H. J. Sauer,et al.  Engineering thermodynamics, 2nd Ed , 1985 .

[19]  Mehrdad Massoudi,et al.  A Mixture Theory formulation for hydraulic or pneumatic transport of solid particles , 2010 .

[20]  Stephen C. Cowin,et al.  A continuum theory for granular materials , 1972 .

[21]  M. Massoudi,et al.  A method for measuring the material moduli of granular materials: Flow in an orthogonal rheometer , 1990 .

[22]  Mehrdad Massoudi,et al.  A continuum model for granular materials: Considering dilatancy and the Mohr-Coulomb criterion , 2001 .

[23]  J. J. Fourier,et al.  The Analytical Theory of Heat , 2009 .

[24]  Nadine Aubry,et al.  Heat transfer in granular materials: effects of nonlinear heat conduction and viscous dissipation , 2013 .

[25]  John C. Slattery,et al.  Advanced transport phenomena , 1999 .

[26]  J. Maxwell,et al.  On Stresses in Rarified Gases Arising from Inequalities of Temperature , 2022 .

[27]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[28]  Mehrdad Massoudi,et al.  On the heat flux vector for flowing granular materials—Part I: effective thermal conductivity and background , 2006 .

[29]  Mehrdad Massoudi,et al.  On the flow of granular materials with variable material properties , 2001 .

[30]  Jovo P. Jarić,et al.  FOURIER'S LAW OF HEAT CONDUCTION IN A NONLINEAR FLUID , 1999 .

[31]  Mehrdad Massoudi,et al.  On some generalizations of the second grade fluid model , 2008 .

[32]  D. E. Carlson,et al.  An introduction to thermomechanics , 1983 .

[33]  Mehrdad Massoudi,et al.  A note on the meaning of mixture viscosity using the classical continuum theories of mixtures , 2008 .

[34]  J. E. Dunn,et al.  Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade , 1974 .

[35]  J. Lumley,et al.  Mechanics of non-Newtonian fluids , 1978 .

[36]  George Gabriel Stokes,et al.  Mathematical and Physical Papers vol.1: On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids , 2009 .

[37]  R. Winterton,et al.  Heat in History , 2001 .

[38]  Ingo Müller,et al.  On the entropy inequality , 1967 .

[39]  Kumbakonam R. Rajagopal,et al.  On flows of granular materials , 1994 .

[40]  Kumbakonam R. Rajagopal,et al.  Mechanics of Mixtures , 1995 .

[41]  R. Rivlin,et al.  Stress-Deformation Relations for Isotropic Materials , 1955 .

[42]  William C. Troy,et al.  Existence of solutions to the equations governing the flow of granular materials , 1992 .

[43]  Arun R. Srinivasa,et al.  Modeling anisotropic fluids within the framework of bodies with multiple natural configurations , 2001 .