Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?

We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO$^+$, within a protoplanetary disk of a T Tauri star. The H$^{13}$CO$^+$ $J=3-2$ rotational transition was observed three times toward IM Lup between July 2014 and May 2015 with the Atacama Large Millimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk integrated $J=3-2$ line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H$^{13}$CO$^+$ emission variation can potentially be explained via X-ray driven chemistry temporarily enhancing the HCO$^+$ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO$^+$ enhancement is indeed caused by a X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.

[1]  E. Bergin,et al.  THE PROPAGATION OF Lyα IN EVOLVING PROTOPLANETARY DISKS , 2011, 1107.3514.

[2]  A. Dalgarno The galactic cosmic ray ionization rate , 2006, Proceedings of the National Academy of Sciences.

[3]  Harvard,et al.  CONSTRAINING THE X-RAY AND COSMIC-RAY IONIZATION CHEMISTRY OF THE TW Hya PROTOPLANETARY DISK: EVIDENCE FOR A SUB-INTERSTELLAR COSMIC-RAY RATE , 2014, 1412.1491.

[4]  P. Caselli,et al.  Molecular Ions in L1544. II. The Ionization Degree , 2001, astro-ph/0109023.

[5]  B. Stelzer,et al.  Variabiity of young stellar objects: Accretion, disks, outflows, and magnetic activity , 2015, 1504.06428.

[6]  E. Bergin,et al.  PHOTOELECTRIC CROSS-SECTIONS OF GAS AND DUST IN PROTOPLANETARY DISKS , 2011, 1107.3515.

[7]  E. Feigelson,et al.  High-Energy Processes in Young Stellar Objects , 1999 .

[8]  K. Rice,et al.  Protostars and Planets V , 2005 .

[9]  D. Wilner,et al.  THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK , 2016, 1610.00715.

[10]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[11]  Ian W. M. Smith,et al.  Rapid neutral–neutral reactions at low temperatures: a new network and first results for TMC‐1 , 2004 .

[12]  E. Bergin,et al.  EXCLUSION OF COSMIC RAYS IN PROTOPLANETARY DISKS. II. CHEMICAL GRADIENTS AND OBSERVATIONAL SIGNATURES , 2014, 1408.2835.

[13]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[14]  R. Nelson,et al.  On the ionisation fraction in protoplanetary disks. III. The effect of X-ray flares on gas-phase che , 2006, astro-ph/0605290.

[15]  Submillimeter lines from circumstellar disks around pre-main sequence stars , 2001, astro-ph/0108375.

[16]  Alexander Dalgarno,et al.  Photoionization Cross Sections of He and H2 , 1998 .

[17]  USA,et al.  COSMIC-RAY AND X-RAY HEATING OF INTERSTELLAR CLOUDS AND PROTOPLANETARY DISKS , 2012 .

[18]  D. Wilner,et al.  DOUBLE DCO+ RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP , 2015, 1508.07296.

[19]  E. Feigelson,et al.  X-Ray Flares in Orion Young Stars. I. Flare Characteristics , 2008, 0807.3005.

[20]  T. Forveille,et al.  X-ray and molecular emission from the nearest region of recent star formation. , 1997, Science.

[21]  N. Calvet,et al.  CHEMISTRY OF A PROTOPLANETARY DISK WITH GRAIN SETTLING AND Lyα RADIATION , 2010, 1011.0446.

[22]  Organic molecules in protoplanetary disks around T Tauri and Herbig Ae stars , 2004, astro-ph/0406577.

[23]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[24]  E. Feigelson,et al.  The Evolution of X-Ray Emission in Young Stars , 2005, astro-ph/0506052.

[25]  T. Amano The dissociative recombination rate coefficients of H+3, HN+2, and HCO+ , 1990 .

[26]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[27]  P. Caselli,et al.  The Ionization Fraction in Dense Cloud Cores , 1998 .

[28]  N. Schulz,et al.  Evidence for Accretion: High-Resolution X-Ray Spectroscopy of the Classical T Tauri Star TW Hydrae , 2001, astro-ph/0111049.

[29]  E. Feigelson,et al.  The Origin of T Tauri X-Ray Emission: New Insights from the Chandra Orion Ultradeep Project , 2005, astro-ph/0506526.

[30]  E. Feigelson,et al.  Bright X-Ray Flares in Orion Young Stars from COUP: Evidence for Star-Disk Magnetic Fields? , 2005, astro-ph/0506134.

[31]  D. Burton,et al.  The disk-bearing young star IM Lupi - X-ray properties and limits on accretion , 2010, 1005.4459.

[32]  Jonathan P. Williams,et al.  The Ionization Fraction in Dense Molecular Gas. I. Low-Mass Cores , 1998 .