On the numerical algorithm for isotropic–kinematic hardening with the Armstrong–Frederick evolution of the back stress

[1]  D. Benson,et al.  On the evolution equation for the rest stress in rate-dependent plasticity , 2002 .

[2]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[3]  R. Armstrong,et al.  Thermal activation based constitutive equations for polymers , 2000 .

[4]  J. Chaboche 1 – Unified Cyclic Viscoplastic Constitutive Equations: Development, Capabilities, and Thermodynamic Framework , 1996 .

[5]  Alan D. Freed,et al.  Viscoplasticity with creep and plasticity bounds , 1993 .

[6]  Peter Wriggers,et al.  Numerical integration of viscoplastic material laws at large strains with application to impact problems , 1992 .

[7]  David L. McDowell,et al.  A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity , 1992 .

[8]  Douglas J. Bammann,et al.  Modeling Temperature and Strain Rate Dependent Large Deformations of Metals , 1990 .

[9]  H. Stamm,et al.  An implicit integration algorithm with a projection method for viscoplastic constitutive equations , 1989 .

[10]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[11]  R. D. Krieg,et al.  Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model , 1977 .

[12]  O. C. Zienkiewicz,et al.  VISCO-PLASTICITY--PLASTICITY AND CREEP IN ELASTIC SOLIDS--A UNIFIED NUMERICAL SOLUTION APPROACH , 1974 .

[13]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[14]  Piotr Perzyna,et al.  The constitutive equations for rate sensitive plastic materials , 1963 .

[15]  W. Prager,et al.  A NEW METHOD OF ANALYZING STRESSES AND STRAINS IN WORK - HARDENING PLASTIC SOLIDS , 1956 .

[16]  William Prager,et al.  The Theory of Plasticity: A Survey of Recent Achievements , 1955 .