Circulant preconditioned iterative methods for peridynamic model simulation

The Galerkin finite element formulation is employed to discretize the peridynamic model for microelastic materials on a finite bar. The coefficient matrix of the resulting system possesses the symmetric Toeplitz-plus-tridiagonal structure. As the symmetric Toeplitz-plus-tridiagonal matrix-vector multiplication can be efficiently implemented via using the fast Fourier transforms (FFTs), which can reduce the computational cost of the matrix-vector product, in this paper we consider the conjugate gradient (CG) method with a circulant preconditioner to solve the discretized linear systems. Moreover, the spectrum of the preconditioned matrix is proven to be mostly clustered around 1. Thus the accelerating benefits of circulant preconditioners are theoretically guaranteed. Numerical experiments are reported to demonstrate the effectiveness and robustness of circulant preconditioners in terms of the number of iterations and CPU time. Finally, the comprehensive performances evaluation of different circulant preconditioners are also given.

[1]  Richard B. Lehoucq,et al.  A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems , 2010, Multiscale Model. Simul..

[2]  R. Chan Circulant preconditioners for Hermitian Toeplitz systems , 2011 .

[3]  Qiang Du,et al.  APPLICATION OF A NONLOCAL VECTOR CALCULUS TO THE ANALYSIS OF LINEAR PERIDYNAMIC MATERIALS. , 2011 .

[4]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[5]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[6]  R. Chan,et al.  An Introduction to Iterative Toeplitz Solvers , 2007 .

[7]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[8]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[9]  Yuqi Wang,et al.  Damped response analysis of nonlinear cushion systems by a linearization method , 2005 .

[10]  Etienne Emmrich,et al.  The peridynamic equation and its spatial discretisation , 2007 .

[11]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[12]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[13]  Gabriele Steidl,et al.  Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems , 1998 .

[14]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[15]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[16]  Hong Wang,et al.  A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .

[17]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[18]  Hong Wang,et al.  A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model , 2012, J. Comput. Phys..

[19]  Raymond H. Chan,et al.  An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .

[20]  Paola Favati,et al.  On a Matrix Algebra Related to the Discrete Hartley Transform , 1993, SIAM J. Matrix Anal. Appl..

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  Jung-Wuk Hong,et al.  A coupling approach of discretized peridynamics with finite element method , 2012 .

[23]  Erdogan Madenci,et al.  Structural stability and failure analysis using peridynamic theory , 2009 .

[24]  R. H. Chan The spectrum of a family of circulant preconditioned Toeplitz systems , 1989 .

[25]  Stewart Andrew Silling,et al.  Linearized Theory of Peridynamic States , 2010 .

[26]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[27]  E. Emmrich,et al.  Analysis and Numerical Approximation of an Integro-differential Equation Modeling Non-local Effects in Linear Elasticity , 2007 .

[28]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[29]  Y. Mikata,et al.  Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod , 2012 .