Shear Brillouin light scattering microscope.

Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution.

[1]  K. Takagi,et al.  Hyper‐resolution Brillouin–Rayleigh spectroscopy with an optical beating technique , 1993 .

[2]  A. Polian Brillouin scattering at high pressure: an overview , 2003 .

[3]  Kristie J. Koski,et al.  Non-invasive determination of the complete elastic moduli of spider silks. , 2013, Nature materials.

[4]  S. Yun,et al.  Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy , 2011, Optics express.

[5]  S. Kojima,et al.  Nonscanning Brillouin spectroscopy applied to solid materials , 2002 .

[6]  Z. K. Wang,et al.  Brillouin observation of bulk and confined acoustic waves in silica microspheres , 2004 .

[7]  K. Sakai,et al.  Simultaneous Observation of Longitudinal and Shear Phonons in Solid Glasses by Optical Beating Brillouin Spectroscopy , 2007 .

[8]  Alan S. Pine,et al.  Brillouin Scattering Study of Acoustic Attenuation in Fused Quartz , 1969 .

[9]  S. Yun,et al.  In vivo biomechanical mapping of normal and keratoconus corneas. , 2015, JAMA ophthalmology.

[10]  J. Randall,et al.  Brillouin scattering, density and elastic properties of the lens and cornea of the eye , 1980, Nature.

[11]  W. F. Love Low-Temperature Thermal Brillouin Scattering in Fused Silica and Borosilicate Glass , 1973 .

[12]  S. Sasaki,et al.  High-pressure elastic properties of liquid and solid neon to 7 GPa , 2005 .

[13]  D. S. Hamilton,et al.  Brillouin scattering measurements on optical glasses , 1979 .

[14]  S. Yun,et al.  Confocal Brillouin microscopy for three-dimensional mechanical imaging. , 2007, Nature photonics.

[15]  K. Weishaupt,et al.  The elastic behaviour of polycarbonate in the glassy state determined by Brillouin scattering , 1995, Journal of Materials Science.

[16]  H. Mao,et al.  Elasticity of forsterite to 16 GPa and the composition of the upper mantle , 1995, Nature.

[17]  Hajime Kimizuka,et al.  Hydrostatic compression and high-pressure elastic constants of coesite silica , 2008 .

[18]  A. Giugni,et al.  A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet , 2005 .

[19]  A. Polian,et al.  Amorphous materials: Properties, structure, and durability , 2012 .

[20]  Pilhan Kim,et al.  In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. , 2011, Biophysical journal.

[21]  Pilhan Kim,et al.  Cross-axis cascading of spectral dispersion. , 2008, Optics letters.

[22]  S. Yun,et al.  Brillouin optical microscopy for corneal biomechanics. , 2012, Investigative ophthalmology & visual science.

[23]  A. Campbell,et al.  A High-Pressure Test of Birch's Law , 1992, Science.

[24]  L. N. Durvasula,et al.  Brillouin scattering from shear waves in amorphous polycarbonate , 1979 .

[25]  R. Sainidou,et al.  The "music" of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale. , 2008, Nano letters.

[26]  S. Kojima,et al.  High-resolution Brillouin spectroscopy with angular dispersion-type Fabry-Perot interferometer and its application to a quartz crystal. , 2007, The Review of scientific instruments.