A splitting algorithm for dual monotone inclusions involving cocoercive operators

We consider the problem of solving dual monotone inclusions involving sums of composite parallel-sum type operators. A feature of this work is to exploit explicitly the properties of the cocoercive operators appearing in the model. Several splitting algorithms recently proposed in the literature are recovered as special cases.

[1]  J. Baillon,et al.  Quelques propriétés des opérateurs angle-bornés etn-cycliquement monotones , 1977 .

[2]  Xiaoming Yuan,et al.  Convergence analysis of primal-dual algorithms for total variation image restoration , 2010 .

[3]  Paul Tseng,et al.  Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming , 1990, Math. Program..

[4]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[5]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[6]  P. Tseng Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .

[7]  Patrick L. Combettes,et al.  A Parallel Splitting Method for Coupled Monotone Inclusions , 2009, SIAM J. Control. Optim..

[8]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[9]  Jian-Feng Cai,et al.  Simultaneous cartoon and texture inpainting , 2010 .

[10]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[11]  P. L. Combettes,et al.  Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[12]  R. Rockafellar,et al.  Duality and stability in extremum problems involving convex functions. , 1967 .

[13]  R. Tyrrell Rockafellar,et al.  Convergence Rates in Forward-Backward Splitting , 1997, SIAM J. Optim..

[14]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[15]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[16]  Laurent Condat A generic first-order primal-dual method for convex optimization involving Lipschitzian, proximable and linear composite terms , 2011 .

[17]  U. Mosco Dual variational inequalities , 1972 .

[18]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[19]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[20]  Patrice Marcotte,et al.  Co-Coercivity and Its Role in the Convergence of Iterative Schemes for Solving Variational Inequalities , 1996, SIAM J. Optim..

[21]  B. Mercier Topics in Finite Element Solution of Elliptic Problems , 1979 .

[22]  P. L. Combettes,et al.  Monotone Operator Methods for Nash Equilibria in Non-potential Games , 2011, 1106.0144.

[23]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[24]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[25]  H. Attouch A General Duality Principle for the Sum of Two Operators 1 , 1996 .

[26]  J. Bolte,et al.  Alternating Proximal Algorithms for Weakly Coupled Minimization Problems. Applications to Dynamical Games and PDE’s , 2008 .

[27]  Heinz H. Bauschke,et al.  The Baillon-Haddad Theorem Revisited , 2009, 0906.0807.

[28]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[29]  P. L. Combettes,et al.  Proximity for sums of composite functions , 2010, 1007.3535.

[30]  J. Pesquet,et al.  A Parallel Inertial Proximal Optimization Method , 2012 .

[31]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.