Algorithmic embeddings

We present several computationally efficient algorithms, and complexity results on low distortion mappings between metric spaces. An embedding between two metric spaces is a mapping between the two metric spaces and the distortion of the embedding is the factor by which the distances change. We have pioneered theoretical work on relative (or approximation) version of this problem. In this setting, the question is the following: for the class of metrics C, and a host metric M', what is the smallest approximation factor a ≥ 1 of an efficient algorithm minimizing the distortion of an embedding of a given input metric M ∈ C into M'? This formulation enables the algorithm to adapt to a given input metric. In particular, if the host metric is "expressive enough" to accurately model the input distances, the minimum achievable distortion is low, and the algorithm will produce an embedding with low distortion as well. This problem has been a subject of extensive applied research during the last few decades. However, almost all known algorithms for this problem are heuristic. As such, they can get stuck in local minima, and do not provide any global guarantees on solution quality. We investigate several variants of the above problem, varying different host and target metrics, and definitions of distortion. We present results for different types of distortion: multiplicative versus additive, worst-case versus average-case and several types of target metrics, such as the line, the plane, d-dimensional Euclidean space, ultrametrics, and trees. We also present algorithms for ordinal embeddings and embedding with extra information. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  Bodhi Priyantha,et al.  The Cricket indoor location system , 2005 .

[2]  D. Peleg,et al.  Low Stretch Spanning Trees for Planar Graphs , 2001 .

[3]  Jim Everett Algorithms for Multidimensional Scaling , 1995 .

[4]  Rahul Shah,et al.  On the Complexity of Ordinal Clustering , 2006, J. Classif..

[5]  Collette R. Coullard,et al.  Distance visibility graphs , 1991, SCG '91.

[6]  Mihai Badoiu,et al.  Approximation algorithms for low-distortion embeddings into low-dimensional spaces , 2005, SODA '05.

[7]  R. Shepard,et al.  Monotone mapping of similarities into a general metric space , 1974 .

[8]  Anupam Gupta Improved bandwidth approximation for trees , 2000, SODA '00.

[9]  Nir Ailon,et al.  Fitting tree metrics: Hierarchical clustering and phylogeny , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[10]  Mihai Badoiu,et al.  Approximation algorithm for embedding metrics into a two-dimensional space , 2003, SODA '03.

[11]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[12]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[13]  Christos H. Papadimitriou,et al.  The complexity of low-distortion embeddings between point sets , 2005, SODA '05.

[14]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[15]  Nathan Linial,et al.  Monotone maps, sphericity and bounded second eigenvalue , 2005, J. Comb. Theory, Ser. B.

[16]  CharikarMoses,et al.  On the impossibility of dimension reduction in l1 , 2005 .

[17]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[18]  Johan Håstad,et al.  Fitting points on the real line and its application to RH mapping , 2003, J. Algorithms.

[19]  N. Alon Tools from higher algebra , 1996 .

[20]  Piotr Indyk,et al.  Low-distortion embeddings of general metrics into the line , 2005, STOC '05.

[21]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[22]  Jaroslav Opatrny,et al.  Total Ordering Problem , 1979, SIAM J. Comput..

[23]  Yuval Rabani,et al.  Low distortion maps between point sets , 2004, STOC '04.

[24]  Jirí Matousek,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[25]  E. Holman The relation between hierarchical and euclidean models for psychological distances , 1972 .

[26]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[27]  James R. Lee,et al.  Absolute Lipschitz extendability , 2004 .

[28]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[29]  Jan M. Rabaey,et al.  Location in distributed ad-hoc wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[30]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[31]  Sándor P. Fekete,et al.  Tree spanners in planar graphs , 2001, Discret. Appl. Math..

[32]  Durbin,et al.  Biological Sequence Analysis , 1998 .

[33]  J. Matousek,et al.  On embedding expanders into ℓp spaces , 1997 .

[34]  Alexander Hall,et al.  Approximating the Distortion , 2005, APPROX-RANDOM.

[35]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[36]  Bhaskar Krishnamachari,et al.  Sharp thresholds For monotone properties in random geometric graphs , 2003, STOC '04.

[37]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[38]  Joseph Y.-T. Leung,et al.  Packing Squares into a Square , 1990, J. Parallel Distributed Comput..

[39]  C. Pandu Rangan,et al.  Restrictions of Minimum Spanner Problems , 1997, Inf. Comput..

[40]  H. Everett,et al.  Distance segment visibility graphs , 2000 .

[41]  Vojtech Rödl,et al.  Geometrical realization of set systems and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[42]  Sampath Kannan,et al.  Approximating the Best-Fit Tree Under Lp Norms , 2005, APPROX-RANDOM.

[43]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[44]  Walter Unger,et al.  The complexity of the approximation of the bandwidth problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[45]  J. Saxe Two papers on graph embedding problems , 1980 .

[46]  J. Matousek,et al.  Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .

[47]  Seth J. Teller,et al.  The cricket compass for context-aware mobile applications , 2001, MobiCom '01.

[48]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[49]  David Peleg,et al.  Approximating Minimum Max-Stretch spanning Trees on unweighted graphs , 2004, SODA '04.

[50]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[51]  James B. Saxe,et al.  Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.

[52]  Piotr Indyk,et al.  Embedding ultrametrics into low-dimensional spaces , 2006, SCG '06.

[53]  Yair Bartal,et al.  Dimension reduction for ultrametrics , 2004, SODA '04.

[54]  Erik D. Demaine,et al.  K-ary Clustering with Optimal Leaf Ordering for Gene Expression Data , 2002, WABI.

[55]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[56]  Madhu Sudan,et al.  A Geometric Approach to Betweenness , 1995, ESA.

[57]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[58]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[59]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[60]  David Peleg,et al.  An Optimal Synchronizer for the Hypercube , 1989, SIAM J. Comput..

[61]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[62]  Yechiam Yemini,et al.  Some theoretical aspects of position-location problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).