Biological Databases for Hematology Research

With the advances of genome-wide sequencing technologies and bioinformatics approaches, a large number of datasets of normal and malignant erythropoiesis have been generated and made public to researchers around the world. Collection and integration of these datasets greatly facilitate basic research and clinical diagnosis and treatment of blood disorders. Here we provide a brief introduction of the most popular omics data resources of normal and malignant hematopoiesis, including some integrated web tools, to help users get better equipped to perform common analyses. We hope this review will promote the awareness and facilitate the usage of public database resources in the hematology research.

[1]  Johan Richter,et al.  Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond-Blackfan anemia. , 2002, Blood.

[2]  Ole Winther,et al.  HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis , 2012, Nucleic Acids Res..

[3]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[4]  Christian J Stoeckert,et al.  Ontogeny of erythroid gene expression. , 2013, Blood.

[5]  F. Tang,et al.  Tracing haematopoietic stem cell formation at single-cell resolution , 2016, Nature.

[6]  I. Dianzani,et al.  A new database for ribosomal protein genes which are mutated in Diamond‐Blackfan Anemia , 2008, Human mutation.

[7]  Francisco Cervantes,et al.  European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. , 2013, Blood.

[8]  Dominik Beck,et al.  BloodChIP: a database of comparative genome-wide transcription factor binding profiles in human blood cells , 2013, Nucleic Acids Res..

[9]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology , 2003, Nucleic Acids Res..

[10]  I. Macaulay,et al.  Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells , 2016, Nature Communications.

[11]  Mutlu Kartal,et al.  The ribosomal basis of diamond‐blackfan anemia: mutation and database update , 2010, Human mutation.

[12]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[13]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[14]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[15]  R. Horos,et al.  Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia , 2012, British journal of haematology.

[16]  N. Mohandas,et al.  Disorders of red cell membrane , 2008, British journal of haematology.

[17]  Patrick Lombard,et al.  CODEX: a next-generation sequencing experiment database for the haematopoietic and embryonic stem cell communities , 2014, Nucleic Acids Res..

[18]  H. Klein,et al.  Leukemia Gene Atlas – A Public Platform for Integrative Exploration of Genome-Wide Molecular Data , 2012, PloS one.

[19]  C. Sieff,et al.  Recent insights into the pathogenesis of Diamond–Blackfan anaemia , 2006, British journal of haematology.

[20]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[21]  Wolfgang Helmberg,et al.  BGMUT: NCBI dbRBC database of allelic variations of genes encoding antigens of blood group systems , 2011, Nucleic Acids Res..

[22]  Giovanni Carlo Del Vecchio,et al.  Dyserythropoietic Anemia and Thrombocytopenia due to a Novel Mutation in GATA-1 , 2005, Acta Haematologica.

[23]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[24]  Ole Winther,et al.  BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis , 2015, Nucleic Acids Res..

[25]  Sung-Ho Goh,et al.  Hembase: browser and genome portal for hematology and erythroid biology , 2004, Nucleic Acids Res..

[26]  Alex P. Reiner,et al.  Massively parallel sequencing: the new frontier of hematologic genomics. , 2013, Blood.