A transparent μECoG array for simultaneous recording and optogenetic stimulation

In this paper we report for the first time the design, fabrication and characterization of an optically transparent electrode array for micro-electrocorticography. We present a 49-channel μECoG array with an electrode pitch of 800 μm and a 16-channel linear μECoG array with an electrode pitch of 200 μm. The backing material was Parylene C. Transparent, sputtered indium tin oxide (ITO) was used in conjunction with e-beam evaporated gold to fabricate the electrodes. We provide electrochemical impedance characterization and light transmission data for the fabricated devices.

[1]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[2]  G. Brindley,et al.  The electrical activity in the motor cortex that accompanies voluntary movement. , 1972, The Journal of physiology.

[3]  Carmena Jose,et al.  Oscillatory phase coupling coordinates anatomically-dispersed functional cell assemblies , 2011 .

[4]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[5]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[6]  Gerwin Schalk,et al.  Can Electrocorticography (ECoG) Support Robust and Powerful Brain–Computer Interfaces? , 2010, Front. Neuroeng..

[7]  Miguel A. L. Nicolelis,et al.  A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation , 2009, Front. Integr. Neurosci..

[8]  C. Charton,et al.  Properties of ITO on PET film in dependence on the coating conditions and thermal processing , 2005 .

[9]  Leslie A. Geddes,et al.  The retrospectroscope: electrocorticography , 1996 .

[10]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[11]  Robert T. Knight,et al.  Cortical Spatio-temporal Dynamics Underlying Phonological Target Detection in Humans , 2011, Journal of Cognitive Neuroscience.

[12]  Michael P. Hughes,et al.  Assessing biocompatibility of materials for implantable microelectrodes using cytotoxicity and protein adsorption studies , 2002, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578).

[13]  Ricardo Izquierdo,et al.  Carbon nanotube sheets as electrodes in organic light-emitting diodes. , 2006 .

[14]  M. Maharbiz,et al.  Fabrication and testing of a large area, high density, parylene MEMS µECoG array , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[15]  Yusuf Selamet,et al.  High quality ITO thin films grown by dc and RF sputtering without oxygen , 2010 .

[16]  Edward O. Mann,et al.  Local Field Potential Oscillations as a Cortical Soliloquy , 2010, Neuron.

[17]  J. Wolpaw,et al.  Decoding flexion of individual fingers using electrocorticographic signals in humans , 2009, Journal of neural engineering.

[18]  Thomas M. Higgins,et al.  Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. , 2009, ACS nano.

[19]  C. Leygraf,et al.  Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. , 2002, Biomolecular engineering.