Simultaneous Edge Flipping in Triangulations

We generalize the operation of flipping an edge in a triangulation to that of flipping several edges simultaneously. Our main result is an optimal upper bound on the number of simultaneous flips that are needed to transform a triangulation into another. Our results hold for triangulations of point sets and for polygons.

[1]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[2]  William J. Schroeder A topology modifying progressive decimation algorithm , 1997 .

[3]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[4]  D. Du,et al.  Computing in Euclidean Geometry: (2nd Edition) , 1995 .

[5]  R. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[6]  Olivier Devillers,et al.  A locally optimal triangulation of the hyperbolic paraboloid , 1995, CCCG.

[7]  Mehdi Behzad,et al.  Graphs and Digraphs , 1981, The Mathematical Gazette.

[8]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[9]  K. Wagner Bemerkungen zum Vierfarbenproblem. , 1936 .

[10]  Marc Noy,et al.  Graph of triangulations of a convex polygon and tree of triangulations , 1999, Comput. Geom..

[11]  Michel Pocchiola,et al.  Topologically sweeping visibility complexes via pseudotriangulations , 1996, Discret. Comput. Geom..

[12]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[13]  Mike Bailey,et al.  Visualization of height field data with physical models and texture photomapping , 1997 .

[14]  David Avis,et al.  Generating rooted triangulations without repetitions , 1996, Algorithmica.

[15]  Marc Noy,et al.  Flipping Edges in Triangulations , 1999, Discret. Comput. Geom..