Temperature dependent fluorescence in disordered Frenkel chains: interplay of equilibration and local band-edge level structure.

We model the optical dynamics in linear Frenkel exciton systems governed by scattering on static disorder and lattice vibrations and calculate the temperature dependent fluorescence spectrum and lifetime. The fluorescence Stokes shift shows a nonmonotonic behavior with temperature, which derives from the interplay of the local band-edge level structure and thermal equilibration. The model yields excellent fits to experiments performed on linear dye aggregates.