Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization

Results on copper metallization diffusion barriers using high-entropy alloy (HEA) nitride are reported. The HEA nitride (AlMoNbSiTaTiVZr)50N50 is amorphous in the as-deposited state and remains its noncrystallinity up to a high temperature of 850°C. To evaluate its diffusion barrier characteristics, Cu∕(AlMoNbSiTaTiVZr)50N50∕Si test structures were prepared and annealed under 750–900°C for 30min. The results show that the current nitride prevents the reaction between Cu and Si before its failure at 900°C. The outstanding barrier performance and high thermal stability of amorphous structure are suggested to originate from multiprincipal-element effects.

[1]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[2]  J. Yeh,et al.  Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water , 2006 .

[3]  M. Nastasi,et al.  Crystallization and oxidation behavior of Mo-Si-N coatings , 1995 .

[4]  M. Nicolet,et al.  Amorphous Ta–Si–N thin‐film alloys as diffusion barrier in Al/Si metallizations , 1990 .

[5]  Jen‐Sue Chen,et al.  Influence of Ta/Si atomic ratio on the interdiffusion between Ta-Si-N and Cu at elevated temperature , 2003 .

[6]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[7]  J. Yeh Recent progress in high-entropy alloys , 2006 .

[8]  M. Pons,et al.  Application of equilibrium thermodynamics to the development of diffusion barriers for copper metallization (invited) , 2000 .

[9]  M. Nicolet,et al.  Reactively sputtered Ti-Si-N films I. Physical properties , 1997 .

[10]  M. Nicolet,et al.  Evaluation of amorphous (Mo, Ta, W)SiN diffusion barriers for 〈Si〉|Cu metallizations , 1993 .

[11]  M. Nicolet Ternary amorphous metallic thin films as diffusion barriers for Cu metallization , 1995 .

[12]  J. S. Chen,et al.  Amorphous Ta-Si-N diffusion barriers in Si/Al and Si/Cu metallizations , 1991 .

[13]  Ki-Bum Kim,et al.  Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization , 2001 .

[14]  M. Nicolet Reactively sputtered ternary films of the type TM–Si–N and their properties (TM=early transition metal) , 2000 .

[15]  Jien-Wei Yeh,et al.  Industrial development of high-entropy alloys , 2006 .

[16]  J. Yeh,et al.  Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[17]  Francis J. DiSalvo Challenges and opportunities in solid-state chemistry , 2000 .

[18]  J. Pelleg,et al.  Diffusion barrier properties of amorphous TiB2 for application in Cu metallization , 2002 .

[19]  W. L. Johnson,et al.  A highly processable metallic glass: Zr[sub 41. 2]Ti[sub 13. 8]Cu[sub 12. 5]Ni[sub 10. 0]Be[sub 22. 5] , 1993 .

[20]  T. J. Yang,et al.  An optimal quasisuperlattice design to further improve thermal stability of tantalum nitride diffusion barriers , 2000 .

[21]  A. L. Greer,et al.  Confusion by design , 1993, Nature.

[22]  J. Yeh,et al.  Mechanical properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288°C high-purity water , 2005 .

[23]  J. Yeh,et al.  Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition , 2004 .

[24]  Eric Eisenbraun,et al.  Ultrathin Diffusion Barriers/Liners for Gigascale Copper Metallization , 2000 .

[25]  Jien-Wei Yeh,et al.  Hyperfine splitting from magnetic boride domains embedded in Fe-Co-Ni-Al-B-Si alloy , 2006 .

[26]  Jaehyeong Kim,et al.  Diffusion barrier and electrical characteristics of a self-aligned MgO layer obtained from a Cu(Mg) alloy film , 2000 .

[27]  R. Ray,et al.  Metallic glass formation and properties in Zr and Ti alloyed with Be—I the binary Zr-Be and Ti-Be systems☆ , 1979 .

[28]  W. Johnson,et al.  A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 , 1993 .

[29]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .