The iterative methods for computing the polar decomposition of rank-deficient matrix
暂无分享,去创建一个
[1] Charles Kenney,et al. Polar Decomposition and Matrix Sign Function Condition Estimates , 1991, SIAM J. Sci. Comput..
[2] Krystyna Zietak,et al. Numerical Behaviour of Higham's Scaled Method for Polar Decomposition , 2004, Numerical Algorithms.
[3] Alan J. Laub,et al. On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.
[4] N. Higham. The matrix sign decomposition and its relation to the polar decomposition , 1994 .
[5] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[6] Nicholas J. Higham,et al. Computing the Polar Decomposition and the Matrix Sign Decomposition in Matrix Groups , 2004, SIAM J. Matrix Anal. Appl..
[7] Nicholas J. Higham,et al. Fast Polar Decomposition of an Arbitrary Matrix , 1990, SIAM J. Sci. Comput..
[8] N. Higham. Computing the polar decomposition with applications , 1986 .
[9] Weiwei Sun,et al. New Perturbation Bounds for Unitary Polar Factors , 2003, SIAM J. Matrix Anal. Appl..
[10] Walter Gander,et al. Algorithms for the Polar Decomposition , 1990, SIAM J. Sci. Comput..
[11] Nicholas J. Higham,et al. A Parallel Algorithm for Computing the Polar Decomposition , 1994, Parallel Comput..