Smoothed-particle-hydrodynamics simulation of port hydrodynamic problems

The thesis reports on the development of a numerical procedure based on the Lagrangian Smoothed-Particle-Hydrodynamics (SPH) method for the simulation of hydrodynamic problems in harbours. The target applications focus on ship induced scouring of the harbour bottom. Respective erosions represent unpleasant phenomena, especially if they occur close to quay walls. They can significantly weaken the structural support and cause cost intensive counter measures. These measures are usually based on a rather weak background knowledge, thus simulations might help to analyse the erosional processes without the need for modelor full-scale experiments. Contrary to common state-of-the-art simulation tools, the present work pursues a monolithic approach to capture the complex overall problem. This requires an SPH procedure that is able to cope with water/soil interaction, floating self-propelled ships as well as large computational domains. Within the present SPH-framework, water is modelled as a Newtonian fluid and the soil is treated by a combined solid/fluid-approach based on the Mohr-Coulomb yield criterion. The technique captures small deformations of the soil by an elastic model whereas a transition to a rate dependent non-Newtonian fluid behaviour is initiated for higher strain rates. The interaction between water and soil is realised by a three-layer suspension model which is needed for an accurate prediction of erosional phenomena. Partly saturated porous media can also play an important role in soil failure processes. They are taken into account by a saturation dependent variable cohesion with the seepage flow through the soil skeleton being evaluated from a simple Darcy approach. A bodyforce propulsor model based on open water characteristics is used to represent ship propellers and thrusters. Vessel motions are captured by a 6DOF motion solver. To enhance the code’s applicability to large domains, a variable particle resolution strategy based on changeable particle masses is applied. This allows for a fine resolution of local details whereas the far field can be modelled by a coarse particle distribution in order to reduce the overall number of particles. Gegenstand der vorliegenden Dissertation ist die Entwicklung eines numerischen Verfahrens auf Basis der Lagrangen Smoothed-Particle-Hydrodynamics (SPH) Methode zur Simulation hydrodynamischer Problemstellungen in Häfen. Im Anwendungsfokus liegen schiffsinduzierte Erosionen der Hafensohle. Insbesondere die auf Propellerund Querstrahlruderwirkung zurückzuführende Kolkbildung nahe der Kaimauer kann eine erhebliche Schwächung der Bauwerksstruktur hervorrufen und führt zu kostenintensiven Gegenmaßnahmen. Der Kolkbildungsprozess ist nicht hinlänglich erforscht. Simulationen können dazu beitragen, die beteiligten Erosionsmechanismen besser zu verstehen, ohne auf Modellbzw. Naturversuche angewiesen zu sein. Im Gegensatz zu derzeit verbreiteten Simulationswerkzeugen wird in dieser Arbeit ein monolithischer Ansatz zur Abbildung der Wasser/Boden-Wechselwirkung verfolgt. Hierzu wird ein SPH Verfahren benötigt, das in der Lage ist, Wasser/Boden-Interaktion und schwimmende, selbstangetriebene Schiffe abzubilden sowie große Rechengebiete zu verarbeiten. Im vorliegenden SPH-Löser wird Wasser als Newtonsches Fluid modelliert. Für den Boden wird ein kombinierter Festkörper/Fluid-Ansatz auf Basis des Mohr-Coulomb Fließkriteriums verwendet, das kleine Verformungen über ein elastisches Modell abbildet. Ein scherratenabhängiger Übergang zu einem nicht-Newtonschen Fluid wird für große Verformungen eingeführt. Die Interaktion zwischen Wasser und Boden wird durch ein dreischichtiges Suspensionsmodell realisiert, das maßgeblich zu einer genauen Vorhersage der Erosionswirkung beiträgt. Weitere Versagensmechanismen von Böden sind häufig auf teilgesättigte poröse Medien zurückzuführen. Sie werden über eine veränderliche effektive Kohäsion berücksichtigt wobei Sickerströmungen des Porenwassers über einen einfachen Darcy Ansatz abgebildet werden. Ein auf Freifahrtkurven basierendes Volumenkraftmodell repräsentiert die Wirkung von Schiffspropellern und -querstrahlern. Schiffsbewegungen werden über einen 6DOF Bewegungslöser berechnet. Um die Anwendbarkeit des Verfahrens für große Rechengebiete zu verbessern werden variable Partikelauflösungen auf Basis veränderlicher Partikelmassen verwendet. Bereiche von besonderem Interesse können dabei fein aufgelöst werden, wohingegen das Fernfeld mit groben Partikelverteilungen abgebildet werden kann um eine Reduzierung der Gesamtpartikelzahl zu erreichen.

[1]  Damien Violeau,et al.  Fluid Mechanics and the SPH Method: Theory and Applications , 2012 .

[2]  O. Faltinsen,et al.  Water entry of two-dimensional bodies , 1993, Journal of Fluid Mechanics.

[3]  A. Souto-Iglesias,et al.  Benefits of using a Wendland kernel for free-surface flows , 2012 .

[4]  Caroline Leppert Mehrphasenmodell für granulare Medien zur numerischen Untersuchung des Phasenübergangs bei der Entleerung von Silos , 2007 .

[5]  Marek Kraskowski Simulating Hull Dynamics in Waves using a RANSE Code , 2010 .

[6]  A. Colagrossi,et al.  Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Liu-Chao Qiu,et al.  Two-Dimensional SPH Simulations of Landslide-Generated Water Waves , 2008 .

[8]  Clausius Inequality Part IV , 1948, Hydrobiologia.

[9]  Pascal Chossat,et al.  The Couette-Taylor Problem , 1992 .

[10]  Kenneth C. Wilson,et al.  Motion of Contact‐Load Particles at High Shear Stress , 1992 .

[11]  Jonathan Feldman,et al.  Dynamic refinement and boundary contact forces in smoothed particle hydrodynamics with applications in fluid flow problems. , 2006 .

[12]  V. C. Patel,et al.  A viscous-flow approach to the computation of propeller-hull interaction , 1988 .

[13]  H Bergh,et al.  PROPELLER EROSION AND PROTECTION METHODS USED IN FERRY TERMINALS IN THE PORT OF STOCKHOLM , 1987 .

[14]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[15]  A. Colagrossi,et al.  δ-SPH model for simulating violent impact flows , 2011 .

[16]  R. Mises Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .

[17]  Erm In,et al.  SEDIMENT TRANSPORT MODELING REVIEW―CURRENT AND FUTURE DEVELOPMENTS , 2010 .

[18]  Yan Xing-Kaeding,et al.  Unified Approach to Ship Seakeeping and Maneuvering by a RANSE Method , 2006 .

[19]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[20]  J. Aberle,et al.  Scale Model Study of Propeller Induced Scour Development , 2013 .

[21]  Yalçın Yüksel,et al.  Jet scour around vertical piles and pile groups , 2005 .

[22]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[23]  J. Owen,et al.  ASPH modeling of Material Damage and Failure , 2010 .

[24]  Ha H. Bui,et al.  An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore‐water pressure , 2013 .

[25]  Yee-Meng Chiew,et al.  JET SCOUR AROUND VERTICAL PILE , 1996 .

[26]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[27]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[28]  David Le Touzé,et al.  An Hamiltonian interface SPH formulation for multi-fluid and free surface flows , 2009, J. Comput. Phys..

[29]  Gerard Hamill,et al.  Determining Propeller Erosion at the Stern of a Berthing Ship , 2013 .

[30]  Jürgen Sauer,et al.  Instationär kavitierende Strömungen - Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik [online] , 2000 .

[31]  Ha H. Bui,et al.  Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model , 2008 .

[32]  G. Oger,et al.  Two-dimensional SPH simulations of wedge water entries , 2006, J. Comput. Phys..

[33]  J. Davenport Editor , 1960 .

[34]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[35]  Salvatore Marrone,et al.  A 2D+t SPH model to study the breaking wave pattern generated by fast ships , 2011 .

[36]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[37]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[38]  Ha H. Bui,et al.  A Study of the Matter of SPH Application to Saturated Soil Problems , 2015, ArXiv.

[39]  Gerd Gudehus,et al.  Physical Soil Mechanics , 2011 .

[40]  M. Prakash,et al.  Simulation of high Reynolds number flow over a backward facing step using SPH , 2006 .

[41]  Benedict D. Rogers,et al.  Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass , 2012 .

[42]  Toon Lenaerts,et al.  Unified Particle Simulations and Interactions in Computer Animation , 2009 .

[43]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[44]  N. A. Adams,et al.  A SPH model for incompressible turbulence , 2012, 1204.5097.

[45]  Damien Violeau,et al.  Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview , 2007 .

[46]  J. Monaghan,et al.  A refined particle method for astrophysical problems , 1985 .

[47]  J. Jenkins,et al.  A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles , 1983, Journal of Fluid Mechanics.

[48]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[49]  Mario Gallati,et al.  SPH Simulation of Sediment Flushing Induced by a Rapid Water Flow , 2012 .

[50]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[51]  A. Chaniotis Remeshed smoothed particle hydrodynamics for the simulation of compressible, viscous, heat conducting, reacting & interfacial flows , 2003 .

[52]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[53]  B. Sumer,et al.  The mechanics of scour in the marine environment , 2002 .

[54]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[55]  Joe J. Monaghan,et al.  SPH particle boundary forces for arbitrary boundaries , 2009, Comput. Phys. Commun..

[56]  David Le Touzé,et al.  Validation of a conservative variable-resolution SPH scheme including ∇h terms , 2011 .

[57]  V. T. Chow Open-channel hydraulics , 1959 .

[58]  John Dubinski A parallel tree code , 1996 .

[59]  Hitoshi Gotoh,et al.  SPH-LES MODEL FOR WAVE DISSIPATION USING A CURTAIN WALL , 2003 .

[60]  N. Rajaratnam EROSION BY PLANE TURBULENT JETS , 1981 .

[61]  J. Ross Macdonald,et al.  Some Simple Isothermal Equations of State , 1966 .

[62]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[63]  Gerard Hamill,et al.  Propeller Wash Scour near Quay Walls , 1999 .

[64]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[65]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[66]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[67]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[68]  C. Moulinec,et al.  Parallel 3-D SPH Simulations , 2008 .

[69]  M. S. Warren,et al.  A parallel hashed Oct-Tree N-body algorithm , 1993, Supercomputing '93.

[70]  M. Quecedo,et al.  Numerical modelling of impulse wave generated by fast landslides , 2004 .

[71]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .

[72]  Benedict D. Rogers,et al.  Advanced Pre-Processing for SPHysics , 2010 .

[73]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[74]  Rade Vignjevic,et al.  Derivation of SPH equations in a moving referential coordinate system , 2009 .

[75]  B. Rogers,et al.  SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation , 2012 .

[76]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[77]  Hervé Capart,et al.  Riemann wave description of erosional dam-break flows , 2002, Journal of Fluid Mechanics.

[78]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[79]  Gerard Hamill THE SCOURING ACTION OF THE PROPELLER JET PRODUCED BY A SLOWLY MANOEUVRING SHIP , 1988 .

[80]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[81]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .