Multifunctional Whisker Arrays for Distance Detection, Terrain Mapping, and Object Feature Extraction

Several species of animals use whiskers to accurately navigate and explore objects in the absence of vision. We have developed inexpensive arrays of artificial whiskers based on strain-gage and Flex Sensor technologies that can be used either in passive (“dragging”) mode, or in active (“whisking”) mode. In the present work we explore the range of functions that whisker arrays can serve on a rover. We demonstrate that when mounted on a rover, whisker arrays can (1) Detect obstacles and determine obstacle distance (2) Map terrain features (3) Determine ground and surface texture (4) Provide an estimate of rover speed (5) Identify “slip” of the rover wheels, and (6) Perform 3-dimensional extraction of object shape. We discuss the potential use of whisker arrays on planetary rovers and as an investigative tool for exploring the encoding of sensory information in the nervous system of animals.

[1]  Hiroshi Yokoi,et al.  An artificial whisker sensor for robotics , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Toshio Tsuji,et al.  Active antenna for contact sensing , 1998, IEEE Trans. Robotics Autom..

[3]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[4]  S. B. Vincent The function of the vibrissae in the behavior of the white rat , 1912 .

[5]  Ashitey Trebi-Ollennu,et al.  Rover localization results for the FIDO rover , 2001, SPIE Optics East.

[6]  S. Pizzarello,et al.  Alanine enantiomers in the Murchison meteorite , 1998, Nature.

[7]  Hiroshi Yokoi,et al.  An active artificial whisker array for texture discrimination , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  Guido Dehnhardt,et al.  Tactual discrimination of size and shape by a California sea lion (Zalophus californianus) , 1996 .

[9]  Alexander Zelinsky,et al.  Whisker based mobile robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[10]  A. T. Hayes,et al.  Reactive Maze Solving with a Biologically Inspired Wind Sensor , 2000 .

[11]  R. A. Russell,et al.  Object location and recognition using whisker sensors , 2003 .

[12]  S. Vijayakumar,et al.  Simulating Whisker Sensors — on the Role of Material Properties for Morphology, Behavior and Evolution , 2004 .

[13]  D. Simons,et al.  Task- and subject-related differences in sensorimotor behavior during active touch. , 1995, Somatosensory & motor research.

[14]  Mark R. Cutkosky,et al.  A Biologically Inspired Passive Antenna for Steering Control of a Running Robot , 2003, ISRR.

[15]  R. Pfeifer,et al.  Simulating Whisker Sensors – on the Role of Material Properties for Morphology , Behavior and Evolution , 2004 .

[16]  H. Bleckmann,et al.  Seal whiskers detect water movements , 1998, Nature.

[17]  Konrad P. Körding,et al.  Optimal Coding for Naturally Occurring Whisker Deflections , 2003, ICANN.

[18]  Hiroshi Yokoi,et al.  Whisking: an unexplored sensory modality , 2002 .

[19]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[20]  Gregory R. Scholz,et al.  Profile sensing with an actuated whisker , 2004, IEEE Transactions on Robotics and Automation.

[21]  M. Brecht,et al.  Functional architecture of the mystacial vibrissae , 1997, Behavioural Brain Research.

[22]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[23]  Aude Billard,et al.  Morphology and Learning - A Case Study on Whiskers , 2004 .

[24]  Hiroshi Yokoi,et al.  Optimal Morphology of a Biologically-Inspired Whisker Array on an Obstacle-Avoiding Robot , 2003, ECAL.

[25]  V. Hafner,et al.  The Artificial Mouse - A Robot with Whiskers and Vision , 2004 .

[26]  Jean-Arcady Meyer,et al.  Adaptive Behavior , 2005 .