Smoother: A Unified and Modular Framework for Incorporating Structural Dependency in Spatial Omics Data

Spatial omics technologies, such as spatial transcriptomics, allow the identification of spatially organized biological processes, while presenting computational challenges for existing analysis approaches that ignore spatial dependencies. Here we introduce Smoother, a unified and modular framework that integrates positional information into non-spatial models via spatial priors and losses. In simulated and real datasets, we show that Smoother enables spatially aware data imputation, cell-type deconvolution, and dimensionality reduction with high accuracy.

[1]  M. Boldrini,et al.  Spatial profiling of chromatin accessibility in mouse and human tissues , 2022, Nature.

[2]  E. Lundberg,et al.  The emerging landscape of spatial profiling technologies , 2022, Nature reviews genetics.

[3]  Mingyuan Zhou,et al.  BayesTME: A unified statistical framework for spatial transcriptomics , 2022, bioRxiv.

[4]  Evan Z. Macosko,et al.  Dissecting the treatment-naive ecosystem of human melanoma brain metastasis , 2022, Cell.

[5]  Michael I. Jordan,et al.  DestVI identifies continuums of cell types in spatial transcriptomics data , 2022, Nature Biotechnology.

[6]  Xiang Zhou,et al.  Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics , 2022, Nature Biotechnology.

[7]  G. Castelo-Branco,et al.  Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level , 2022, Science.

[8]  Fabian J Theis,et al.  Squidpy: a scalable framework for spatial omics analysis , 2022, Nature Methods.

[9]  P. Danaher,et al.  Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data , 2022, Nature Communications.

[10]  Stephen R. Williams,et al.  A single-cell and spatially resolved atlas of human breast cancers , 2021, Nature Genetics.

[11]  Gustavo S. França,et al.  Exploring tissue architecture using spatial transcriptomics , 2021, Nature.

[12]  Jonathan S. Packer,et al.  Embryo-scale, single-cell spatial transcriptomics , 2021, Science.

[13]  Raphael Gottardo,et al.  Spatial transcriptomics at subspot resolution with BayesSpace , 2021, Nature Biotechnology.

[14]  K. Martinowich,et al.  spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data , 2021, BMC Genomics.

[15]  Howard Y. Chang,et al.  ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis , 2021, Nature Genetics.

[16]  Guocheng Yuan,et al.  SpatialDWLS: accurate deconvolution of spatial transcriptomic data , 2021, Genome Biology.

[17]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[18]  Evan Z. Macosko,et al.  Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 , 2020, Nature Biotechnology.

[19]  Joseph Bergenstråhle,et al.  Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography , 2020, Communications Biology.

[20]  Li Yang,et al.  On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice , 2020, Neurocomputing.

[21]  Holger Heyn,et al.  Seeded NMF regression to Deconvolute Spatial Transcriptomics Spots with Single-Cell Transcriptomes , 2020 .

[22]  Rafael A. Irizarry,et al.  Robust decomposition of cell type mixtures in spatial transcriptomics , 2020, Nature Biotechnology.

[23]  J. Kleinman,et al.  Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex , 2020, Nature Neuroscience.

[24]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[25]  Guo-Cheng Yuan,et al.  Accurate estimation of cell-type composition from gene expression data , 2019, Nature Communications.

[26]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[27]  Daniel L. Oberski,et al.  Shrinkage priors for Bayesian penalized regression , 2018, Journal of Mathematical Psychology.

[28]  Elad Plaut,et al.  From Principal Subspaces to Principal Components with Linear Autoencoders , 2018, ArXiv.

[29]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[30]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[31]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[32]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[33]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[34]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[35]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.

[36]  P. Tseng,et al.  On the Statistical Analysis of Smoothing by Maximizing Dirty Markov Random Field Posterior Distributions , 2004 .

[37]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[38]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[39]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[40]  L. Anselin,et al.  Spatial Econometrics: Methods and Models , 1988 .