Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system

A gold-coupled ZnTe/ZnO-nanowire array is a new photocathode for selective CO2 reduction to CO. At −0.7 VRHE under simulated 1 sun illumination, its photocurrent (−16.0 mA cm−2) and incident photon-to-current conversion efficiency (97%) represent the highest among reported ZnTe photocathodes for CO2 reduction and dramatic enhancement from those of a bare electrode (−7.9 mA cm−2, 68%). In addition, the Au nanoparticles convert mainly-hydrogen-producing bare ZnTe/ZnO-nanowires into mainly-CO-producing photocathodes in photoelectrochemical CO2 reduction. The remarkable effects of the Au co-catalyst originate from the formation of a Schottky junction with ZnTe to improve charge separation and to provide reaction centers for CO2 reduction suppressing competing water reduction.

[1]  S. Woo,et al.  Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation , 2015 .

[2]  Y. Chabal,et al.  Sensing the charge state of single gold nanoparticles via work function measurements. , 2015, Nano letters.

[3]  Xin Wang,et al.  A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts , 2014 .

[4]  R. Hamers,et al.  Selective photoelectrochemical reduction of aqueous CO₂ to CO by solvated electrons. , 2014, Angewandte Chemie.

[5]  Hyunwoong Park,et al.  Sn‐Coupled p‐Si Nanowire Arrays for Solar Formate Production from CO2 , 2014 .

[6]  E. Kim,et al.  Size-dependent work function and catalytic performance of gold nanoparticles decorated graphene oxide sheets , 2014 .

[7]  R. Cava,et al.  Mg-Doped CuFeO2 Photocathodes for Photoelectrochemical Reduction of Carbon Dioxide , 2013 .

[8]  G. Jung,et al.  Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction. , 2013, Nano letters.

[9]  H. Águas,et al.  Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation , 2013, Scientific Reports.

[10]  K. Rajeshwar,et al.  Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. , 2013, Chemical communications.

[11]  K. Sun,et al.  Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting , 2012, Nanotechnology.

[12]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[13]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[14]  J. S. Lee,et al.  Solution-based fabrication of ZnO/ZnSe heterostructure nanowire arrays for solar energy conversion , 2011 .

[15]  J. S. Lee,et al.  Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[16]  M. Vasilevskiy,et al.  Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing , 2011 .

[17]  W. Lei,et al.  Key Roles of Solution pH and Ligands in the Synthesis of Aqueous ZnTe Nanoparticles , 2010 .

[18]  Yanhong Luo,et al.  A flexible carbon counter electrode for dye-sensitized solar cells , 2009 .

[19]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[20]  Jeunghee Park,et al.  Shape Evolution of ZnTe Nanocrystals: Nanoflowers, Nanodots, and Nanorods , 2007 .

[21]  Xingde Li,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[22]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[23]  M. Ratner,et al.  Multipolar excitation in triangular nanoprisms. , 2005, The Journal of chemical physics.

[24]  Ashraful Islam,et al.  Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[25]  Vinay Gupta,et al.  Optical waveguiding in amorphous tellurium oxide thin films , 2003 .

[26]  T. Mahalingam,et al.  Electrochemical deposition of ZnTe thin films , 2002 .

[27]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[28]  Y. Nakato,et al.  An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles , 1998 .

[29]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[30]  Masahiro Hiramoto,et al.  Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low‐Temperature Aqueous KHCO 3 Media , 1990 .

[31]  K. W. Frese,et al.  The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials , 1986 .

[32]  V. S. Bagotzky,et al.  Electroreduction of carbon dioxide: Part III. Adsorption and reduction of CO2 on platinum , 1985 .

[33]  Bruce A. Parkinson,et al.  Photoelectrochemical pumping of enzymatic CO2 reduction , 1984, Nature.

[34]  J. Woodall,et al.  Schottky barriers: An effective work function model , 1981 .

[35]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[36]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[37]  R. Doremus Optical Properties of Small Gold Particles , 1964 .

[38]  G. Garton,et al.  The color of colloidal gold , 1954 .