Environmental and resource aspects of sustainable biocomposites

This review critically discusses the environmental and resource implications for the design of sustainable biocomposites. Sustainable biocomposites should satisfy several requirements: (i) renewable and/or recycled resources should be utilized for their manufacture; (ii) the synthetic, modification, and processing operations should be benign and energy effective; (iii) no hazardous environmental or toxicological effects should arise during any stage of their life cycle; and (iv) their waste management options should be implemented. The future integration of biorefineries and green chemistry will guarantee the availability of a wide range of raw materials for their preparation. The emission of volatile organic compounds and the release of nanoparticles should be evaluated from a toxicological and environmental point of view. Finally, the susceptibility of sustainable biocomposites towards degradation, including abiotic effects (water absorption, thermo- and photo-oxidation) and biofilm formation and biodegradation, must be considered, to guarantee their structural and functional stability during service life, and to ensure their biodegradability and assimilation during composting.

[1]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[2]  S. Karlsson,et al.  Emission of possible odourous low molecular weight compounds in recycled biofibre/polypropylene composites monitored by head-space SPME-GC-MS , 2005 .

[3]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[4]  E. Rudnik,et al.  Ecotoxicity of biocomposites based on renewable feedstock - preliminary studies. , 2007, Chemosphere.

[5]  Shufang Wang,et al.  Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite , 2005 .

[6]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[7]  Martin Scheringer,et al.  Nanoecotoxicology: Environmental risks of nanomaterials. , 2008, Nature nanotechnology.

[8]  Sabu Thomas,et al.  Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites , 2002 .

[9]  Richard C. M. Yam,et al.  Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium , 2008 .

[10]  I. Choi,et al.  Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil , 2006 .

[11]  Khara D Grieger,et al.  Setting the limits for engineered nanoparticles in European surface waters - are current approaches appropriate? , 2009, Journal of environmental monitoring : JEM.

[12]  C. Ha,et al.  Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites , 2002 .

[13]  Paul Gatenholm,et al.  Biomimetic engineering of cellulose-based materials. , 2007, Trends in biotechnology.

[14]  F. Chapin,et al.  Planetary boundaries: Exploring the safe operating space for humanity , 2009 .

[15]  R. Singh,et al.  Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. , 2008, Bioresource technology.

[16]  David A. Glassner,et al.  Applications of life cycle assessment to NatureWorks polylactide (PLA) production , 2003 .

[17]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[18]  M. Xanthos,et al.  Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides , 2008 .

[19]  Chin-San Wu Assessing biodegradability and mechanical, thermal, and morphological properties of an acrylic acid‐modified poly(3‐hydroxybutyric acid)/wood flours biocomposite , 2006 .

[20]  Mingshu Yang,et al.  Photo-oxidative degradation of polypropylene/montmorillonite nanocomposites , 2005 .

[21]  Christophe Baley,et al.  Seawater ageing of flax/poly(lactic acid) biocomposites , 2009 .

[22]  A. Bessadok,et al.  Influence of chemical modifications on water-sorption and mechanical properties of Agave fibres , 2008 .

[23]  C. Baley,et al.  Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite , 2009 .

[24]  Bruce E. Waymack,et al.  Pyrolysis behavior and kinetics of biomass derived materials , 2002 .

[25]  Robert Elias,et al.  Biocomposites Technology, Environmental Credentials and Market Forces , 2006 .

[26]  Katharine Sarikakis,et al.  Green Composites as Panacea? Socio-Economic Aspects of Green Materials , 2006 .

[27]  Richard D. Handy,et al.  The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs , 2008, Ecotoxicology.

[28]  Rainer Zah,et al.  Curauá fibers in the automobile industry - a sustainability assessment , 2007 .

[29]  N. Stark Influence of Moisture Absorption on Mechanical Properties of Wood Flour-Polypropylene Composites , 2001 .

[30]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[31]  S. Karlsson,et al.  The effect of biodegradation on surface and bulk property changes of polypropylene, recycled polypropylene and polylactide biocomposites , 2009 .

[32]  H. M. Azeredo Nanocomposites for food packaging applications , 2009 .

[33]  Sabu Thomas,et al.  Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. , 2005, Biomacromolecules.

[34]  M. Miao,et al.  Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites , 2009 .

[35]  P. Gatenholm,et al.  Biodegradable natural composites. II. Synergistic effects of processing cellulose with PHB , 1994 .

[36]  Evangelos C. Petrou,et al.  Biofuels: A Survey on Pros and Cons , 2009 .

[37]  O. Jolliet,et al.  Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics , 2001 .

[38]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[39]  Alexei Vazquez,et al.  Aqueous Degradation of MATER BI Y—Sisal Fibers Biocomposites , 2007 .

[40]  R. Scaffaro,et al.  Degradation of Mater-Bi®/wood flour biocomposites in active sewage sludge , 2009 .

[41]  P. Degée,et al.  Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation , 2005 .

[42]  A. J. Hunt,et al.  Green chemistry and the biorefinery: a partnership for a sustainable future , 2006 .

[43]  Bryce J Marquis,et al.  Analytical methods to assess nanoparticle toxicity. , 2009, The Analyst.

[44]  S. Adhikari,et al.  Biorefineries: Current Status, Challenges, and Future Direction , 2006 .

[45]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[46]  Thomas Lampke,et al.  Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior , 2002 .

[47]  E. Pollet,et al.  Progress in nano-biocomposites based on polysaccharides and nanoclays , 2009 .

[48]  Manjusri Misra,et al.  Surface modifications of natural fibers and performance of the resulting biocomposites: An overview , 2001 .

[49]  Manjusri Misra,et al.  A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites , 2004 .

[50]  Martin K. Patel,et al.  Comparative life cycle studies on poly(3-hydroxybutyrate)-based composites as potential replacement for conventional petrochemical plastics. , 2007, Biomacromolecules.

[51]  R. Singh,et al.  An overview on the degradability of polymer nanocomposites , 2005 .

[52]  Alfonso Jiménez,et al.  Thermal degradation of mixtures of polycaprolactone with cellulose derivatives , 2003 .

[53]  James H. Clark,et al.  Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass , 2007 .

[54]  G. Camino,et al.  Biodegradation of poly(lactic acid) and its nanocomposites. , 2009 .

[55]  S. Karlsson,et al.  Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties , 2004 .

[56]  R. Ruseckaite,et al.  Binary mixtures based on polycaprolactone and cellulose derivatives , 2007 .

[57]  K. Matyjaszewski,et al.  "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. , 2007, Chemical reviews.

[58]  Y. Wan,et al.  Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites , 2009 .

[59]  X. Xu,et al.  Life cycle assessment of wood-fibre-reinforced polypropylene composites , 2008 .

[60]  Alexei Vazquez,et al.  Degradation of polycaprolactone/starch blends and composites with sisal fibre , 2004 .

[61]  J. Seppälä,et al.  Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact. , 2002, Biomacromolecules.

[62]  Gayathri Gopalakrishnan,et al.  Biofuels, land, and water: a systems approach to sustainability. , 2009, Environmental science & technology.

[63]  Y. Grohens,et al.  Effect of Reprocessing Cycles on the Morphology and Properties of Poly(propylene)/ Wood Flour Composites Compatibilized with EBAGMA Terpolymer , 2009 .

[64]  Alain Dufresne,et al.  Polysaccharide nano crystal reinforced nanocomposites , 2008 .

[65]  Mohammad S. Islam,et al.  Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites , 2010 .

[66]  Z. Ishak,et al.  Water absorption and hygrothermal aging study on organomontmorillonite reinforced polyamide 6/polypropylene nanocomposites , 2005 .

[67]  Pratim Biswas,et al.  Assessing the risks of manufactured nanomaterials. , 2006, Environmental science & technology.

[68]  David B. Walden,et al.  Report of the Secretary-General , 1989 .

[69]  Damià Barceló,et al.  Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment , 2009 .

[70]  Lucas Reijnders,et al.  Cleaner nanotechnology and hazard reduction of manufactured nanoparticles , 2006 .

[71]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[72]  M. Beg,et al.  Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites , 2008 .

[73]  H. Krug,et al.  Nanoecotoxicology: nanoparticles at large. , 2008, Nature nanotechnology.

[74]  Luis Reis,et al.  Ecodesign of automotive components making use of natural jute fiber composites , 2010 .

[75]  Long Yu,et al.  Polymer blends and composites from renewable resources , 2006 .

[76]  G. Heath,et al.  Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? , 2009, Environmental science & technology.

[77]  J. Clark,et al.  The integration of green chemistry into future biorefineries. , 2009 .

[78]  S. Karlsson,et al.  Quality Concepts for the Improved Use of Recycled Polymeric Materials: A Review , 2008 .

[79]  Akira Makino,et al.  Enzymatic polymer synthesis: an opportunity for green polymer chemistry. , 2009, Chemical reviews.

[80]  P. Degée,et al.  Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. , 2003, Carbohydrate research.

[81]  Biqiong Chen,et al.  Polymeric thermal actuation using laminates based on polymer–clay nanocomposites , 2008 .

[82]  C. Baley,et al.  Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites , 2007 .

[83]  P. Crutzen Geology of mankind , 2002, Nature.

[84]  L. Gianfreda,et al.  Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions , 2008 .

[85]  M. Bousmina,et al.  Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world , 2005 .

[86]  Alessandro Gandini,et al.  Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials , 2008 .

[87]  Zhongyi Zhang,et al.  Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites , 2007 .

[88]  Frankie Wood-Black,et al.  Overcoming nontechnical barriers to the implementation of sustainable solutions in industry. , 2009, Environmental science & technology.

[89]  Sumin Kim,et al.  Physico‐Mechanical Properties, Odor and VOC Emission of Bio‐Flour‐Filled Poly(propylene) Bio‐Composites with Different Volcanic Pozzolan Contents , 2006 .

[90]  Gregory M. Bohlmann,et al.  Biodegradable packaging life-cycle assessment , 2004 .

[91]  K. Satyanarayana,et al.  Biodegradable composites based on lignocellulosic fibers—An overview , 2009 .

[92]  M. Itävaara,et al.  Ecotoxicity tests for compost applications. , 2001, Ecotoxicology and environmental safety.

[93]  P. Maiti,et al.  Nanoparticle-induced controlled biodegradation and its mechanism in poly(epsilon-caprolactone). , 2010, ACS applied materials & interfaces.

[94]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[95]  L. Tabil,et al.  Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review , 2007 .

[96]  T. Gerngross,et al.  Can biotechnology move us toward a sustainable society? , 1999, Nature Biotechnology.

[97]  Luc Avérous,et al.  Nano-biocomposites: Biodegradable polyester/nanoclay systems , 2009 .

[98]  S. Joshi,et al.  Are natural fiber composites environmentally superior to glass fiber reinforced composites , 2004 .

[99]  J. Tesha,et al.  Some opportunities and challenges of producing bio-composites from non-wood residues , 2006 .

[100]  Zhaobin Qiu,et al.  Biodegradable Poly(L-lactide)/Polyhedral Oligomeric Silsesquioxanes Nanocomposites: Enhanced Crystallization, Mechanical Properties, and Hydrolytic Degradation , 2010 .

[101]  Junya Nishino,et al.  Acceleration of cellulose co-pyrolysis with polymer , 2001 .

[102]  Paul T Anastas,et al.  Innovations and green chemistry. , 2007, Chemical reviews.

[103]  C. Batt,et al.  New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. , 2007, Biomacromolecules.

[104]  M. A. Rahman,et al.  Physico-Mechanical and Degradation Properties of Gamma-Irradiated Biocomposites of Jute Fabric-Reinforced Poly(caprolactone) , 2009 .

[105]  R. Reis,et al.  Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments , 2004 .

[106]  G. Brundtland,et al.  Our common future , 1987 .

[107]  S. Ray,et al.  New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials , 2003 .

[108]  J. Lange Lignocellulose conversion: an introduction to chemistry, process and economics , 2007 .

[109]  Martin K. Patel,et al.  Life Cycle Assessment of Polysaccharide Materials: A Review , 2008 .

[110]  Seung-Hwan Lee,et al.  Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites , 2006 .

[111]  J. Schnoor,et al.  Sustainability science and engineering: the emergence of a new metadiscipline. , 2003, Environmental science & technology.

[112]  Francesco Cherubini,et al.  LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass , 2010 .

[113]  Peter J. Halley,et al.  Biocomposites based on plasticized starch , 2009 .

[114]  K. Matyjaszewski,et al.  Environmentally benign atom transfer radical polymerization: Towards “green” processes and materials , 2006 .

[115]  C. Deroanne,et al.  Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. , 2010 .

[116]  Paresh Chandra Ray,et al.  Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs , 2009, Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews.

[117]  P. Davies,et al.  Effect of recycling on mechanical behaviour of biocompostable flax/poly(L-lactide) composites , 2008 .

[118]  S. Ray,et al.  Control of Biodegradability of Polylactide via Nanocomposite Technology , 2003 .

[119]  L. Reijnders Conditions for the sustainability of biomass based fuel use , 2006 .

[120]  Kazunobu Yamada,et al.  Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material , 2002 .

[121]  D. Weiss,et al.  Human health implications of nanomaterial exposure , 2008 .

[122]  S. Karlsson,et al.  Chemical and physical modifications of rice husks for use as composite panels , 2007 .

[123]  M. Beg,et al.  Reprocessing of wood fibre reinforced polypropylene composites. Part I: Effects on physical and mechanical properties , 2008 .

[124]  S. Karlsson,et al.  Microbiological growth testing of polymeric materials: an evaluation of new methods , 2005 .

[125]  M. Errico,et al.  Recycling of polypropylene-based eco-composites , 2008 .

[126]  Rudolf Pfaendner,et al.  Nanocomposites: Industrial opportunity or challenge? , 2010 .

[127]  G. Christie,et al.  Biodegradation and ecotoxicity evaluation of a bionolle and starch blend and its degradation products in compost , 2003 .

[128]  Sabu Thomas,et al.  Ageing studies of pineapple leaf fiber–reinforced polyester composites , 2004 .

[129]  Christian Belloy,et al.  Polymer biodegradation: mechanisms and estimation techniques. , 2008, Chemosphere.

[130]  H. Flemming Relevance of biofilms for the biodeterioration of surfaces of polymeric materials , 1998 .

[131]  Lin Li,et al.  Thermal processing of starch-based polymers , 2009 .

[132]  M. Beg,et al.  Mechanical performance of Kraft fibre reinforced polypropylene composites: Influence of fibre length, fibre beating and hygrothermal ageing , 2008 .

[133]  Sabu Thomas,et al.  Short sisal fibre reinforced natural rubber composites: high-energy radiation, thermal and ozone degradation , 1994 .

[134]  R. Ruseckaite,et al.  Thermal degradation and pyrolysis of mixtures based on poly(3-hydroxybutyrate-8%-3-hydroxyvalerate) and cellulose derivatives , 2005 .

[135]  Damià Barceló,et al.  Ecotoxicity and analysis of nanomaterials in the aquatic environment , 2009, Analytical and bioanalytical chemistry.

[136]  L. Reijnders The release of TiO2 and SiO2 nanoparticles from nanocomposites , 2009 .