Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces

This paper presents a class of boundary integral equation methods for the numerical solution of acoustic and electromagnetic time-domain scattering problems in the presence of unbounded penetrable interfaces in two spatial dimensions. The proposed methodology relies on convolution quadrature (CQ) schemes and the recently introduced windowed Green function (WGF) method. As in standard time-domain scattering from bounded obstacles, a CQ method of the user's choice is used to transform the problem into a finite number of (complex) frequency-domain problems posed, in our case, on the domains containing unbounded penetrable interfaces. Each one of the frequency-domain transmission problems is then formulated as a second-kind integral equation that is effectively reduced to a bounded interface by means of the WGF method—which introduces errors that decrease super-algebraically fast as the window size increases. The resulting windowed integral equations can then be solved by means of any (accelerated or unaccelerated) off-the-shelf Nyström or boundary element Helmholtz integral equation solvers capable of handling complex wavenumbers with large imaginary part. A high-order Nyström method based on Alpert's quadrature rules is used here. A variety of CQ schemes and numerical examples, including wave propagation in open waveguides as well as scattering from multiple layered media, demonstrate the capabilities of the proposed approach.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Pérez Arancibia,et al.  Windowed Integral Equation Methods for Problems of Scattering by Defects and Obstacles in Layered Media , 2017 .

[3]  W. Marsden I and J , 2012 .

[4]  Christophe Hazard,et al.  Existence, uniqueness and analyticity properties for electromagnetic scattering in a two‐layered medium , 1998 .

[5]  Oscar P. Bruno,et al.  Windowed Green Function Method for Nonuniform Open-Waveguide Problems , 2016, IEEE Transactions on Antennas and Propagation.

[6]  Wolfgang Hackbusch,et al.  Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation by Cutoff and Panel-Clustering , 2007 .

[7]  Alexander Ostermann,et al.  RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE , 1993 .

[8]  Ya Yan Lu,et al.  Efficient high order waveguide mode solvers based on boundary integral equations , 2014, J. Comput. Phys..

[9]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[10]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[11]  Leslie Greengard,et al.  A fast solver for multi-particle scattering in a layered medium. , 2014, Optics express.

[12]  Simon R. Arridge,et al.  Solving Boundary Integral Problems with BEM++ , 2015, ACM Trans. Math. Softw..

[13]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[14]  Jung Hoon Lee,et al.  A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics , 2010, Journal of Lightwave Technology.

[15]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[16]  Martin Schanz,et al.  Convolution quadrature method‐based symmetric Galerkin boundary element method for 3‐d elastodynamics , 2008 .

[17]  Lehel Banjai,et al.  Fast convolution quadrature for the wave equation in three dimensions , 2012, J. Comput. Phys..

[18]  Ya Yan Lu,et al.  Perfectly Matched Layer Boundary Integral Equation Method for Wave Scattering in a Layered Medium , 2016, SIAM J. Appl. Math..

[19]  Steven G. Johnson Notes on FFT-based differentiation , 2011 .

[20]  Randy C. Paffenroth,et al.  Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations , 2009, J. Comput. Phys..

[21]  J. A. Hudson,et al.  Acoustics of layered media I. Plane and quasi-plane waves L. M. Brekhovskikh and O. A. Godin, Springer Series on Wave Phenomena, vol. 5, Springer-Verlag, Berlin, 1990, x + 240 pp, hardcover ISBN 3-540-51038-9, DM 128. , 1991 .

[22]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[23]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[24]  Carlos Pérez-Arancibia,et al.  High-order integral equation methods for problems of scattering by bumps and cavities on half-planes. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Steven G. Johnson,et al.  Inverse design of large-area metasurfaces. , 2018, Optics express.

[26]  Krzysztof A. Michalski,et al.  Efficient computation of Sommerfeld integral tails – methods and algorithms , 2016 .

[27]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[28]  Per-Gunnar Martinsson,et al.  High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane , 2014, Adv. Comput. Math..

[29]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[30]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[31]  Yijun Liu Fast Multipole Boundary Element Method: Theory and Applications in Engineering , 2009 .

[32]  Francisco-Javier Sayas,et al.  Convolution Quadrature for Wave Simulations , 2014, 1407.0345.

[33]  Lehel Banjai,et al.  Rapid Solution of the Wave Equation in Unbounded Domains , 2008, SIAM J. Numer. Anal..

[34]  Timo Betcke,et al.  Overresolving in the Laplace Domain for Convolution Quadrature Methods , 2016, SIAM J. Sci. Comput..

[35]  Gerhard Kristensson A uniqueness theorem for the Helmholtz' equation: Penetrable media with an infinite interface , 1980 .

[36]  T. Ha-Duong,et al.  On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .

[37]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[38]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[39]  Peter Monk,et al.  Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation , 2012 .

[40]  Leslie Greengard,et al.  A new hybrid integral representation for frequency domain scattering in layered media , 2018, Applied and Computational Harmonic Analysis.

[41]  Mark Lyon,et al.  Windowed Green Function Method for Layered-Media Scattering , 2015, SIAM J. Appl. Math..

[42]  O. Bruno,et al.  Windowed Green function method for the Helmholtz equation in the presence of multiply layered media , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[45]  C. Turc,et al.  Well-posed boundary integral equation formulations and Nystr\"om discretizations for the solution of Helmholtz transmission problems in two-dimensional Lipschitz domains , 2015, 1509.04415.

[46]  Lehel Banjai,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Wave Propagation Problems Treated with Convolution Quadrature and Bem Wave Propagation Problems Treated with Convolution Quadrature and Bem , 2022 .

[47]  Akash Anand,et al.  Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners , 2012 .

[48]  Francisco-Javier Sayas,et al.  Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .

[49]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[50]  Jens Markus Melenk,et al.  Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.

[51]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[52]  Lehel Banjai,et al.  Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..

[53]  A. Friedman,et al.  Modal analysis of homogeneous optical waveguides by the boundary integral formulation and the Nyström method , 1998 .