Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces
暂无分享,去创建一个
Carlos Pérez-Arancibia | Luiz M. Faria | Ignacio Labarca | C. Pérez-Arancibia | L. Faria | Ignacio Labarca
[1] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[2] Pérez Arancibia,et al. Windowed Integral Equation Methods for Problems of Scattering by Defects and Obstacles in Layered Media , 2017 .
[3] W. Marsden. I and J , 2012 .
[4] Christophe Hazard,et al. Existence, uniqueness and analyticity properties for electromagnetic scattering in a two‐layered medium , 1998 .
[5] Oscar P. Bruno,et al. Windowed Green Function Method for Nonuniform Open-Waveguide Problems , 2016, IEEE Transactions on Antennas and Propagation.
[6] Wolfgang Hackbusch,et al. Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation by Cutoff and Panel-Clustering , 2007 .
[7] Alexander Ostermann,et al. RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE , 1993 .
[8] Ya Yan Lu,et al. Efficient high order waveguide mode solvers based on boundary integral equations , 2014, J. Comput. Phys..
[9] Christian Lubich,et al. Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..
[10] Bradley K. Alpert,et al. Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..
[11] Leslie Greengard,et al. A fast solver for multi-particle scattering in a layered medium. , 2014, Optics express.
[12] Simon R. Arridge,et al. Solving Boundary Integral Problems with BEM++ , 2015, ACM Trans. Math. Softw..
[13] Y. Mukaigawa,et al. Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .
[14] Jung Hoon Lee,et al. A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics , 2010, Journal of Lightwave Technology.
[15] Carretera de Valencia,et al. The finite element method in electromagnetics , 2000 .
[16] Martin Schanz,et al. Convolution quadrature method‐based symmetric Galerkin boundary element method for 3‐d elastodynamics , 2008 .
[17] Lehel Banjai,et al. Fast convolution quadrature for the wave equation in three dimensions , 2012, J. Comput. Phys..
[18] Ya Yan Lu,et al. Perfectly Matched Layer Boundary Integral Equation Method for Wave Scattering in a Layered Medium , 2016, SIAM J. Appl. Math..
[19] Steven G. Johnson. Notes on FFT-based differentiation , 2011 .
[20] Randy C. Paffenroth,et al. Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations , 2009, J. Comput. Phys..
[21] J. A. Hudson,et al. Acoustics of layered media I. Plane and quasi-plane waves L. M. Brekhovskikh and O. A. Godin, Springer Series on Wave Phenomena, vol. 5, Springer-Verlag, Berlin, 1990, x + 240 pp, hardcover ISBN 3-540-51038-9, DM 128. , 1991 .
[22] O. Bruno,et al. A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .
[23] Steven G. Johnson,et al. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..
[24] Carlos Pérez-Arancibia,et al. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.
[25] Steven G. Johnson,et al. Inverse design of large-area metasurfaces. , 2018, Optics express.
[26] Krzysztof A. Michalski,et al. Efficient computation of Sommerfeld integral tails – methods and algorithms , 2016 .
[27] C. Schwab,et al. Boundary Element Methods , 2010 .
[28] Per-Gunnar Martinsson,et al. High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane , 2014, Adv. Comput. Math..
[29] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[30] C. Lubich. Convolution quadrature and discretized operational calculus. I , 1988 .
[31] Yijun Liu. Fast Multipole Boundary Element Method: Theory and Applications in Engineering , 2009 .
[32] Francisco-Javier Sayas,et al. Convolution Quadrature for Wave Simulations , 2014, 1407.0345.
[33] Lehel Banjai,et al. Rapid Solution of the Wave Equation in Unbounded Domains , 2008, SIAM J. Numer. Anal..
[34] Timo Betcke,et al. Overresolving in the Laplace Domain for Convolution Quadrature Methods , 2016, SIAM J. Sci. Comput..
[35] Gerhard Kristensson. A uniqueness theorem for the Helmholtz' equation: Penetrable media with an infinite interface , 1980 .
[36] T. Ha-Duong,et al. On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .
[37] C. Lubich. Convolution quadrature and discretized operational calculus. II , 1988 .
[38] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[39] Peter Monk,et al. Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation , 2012 .
[40] Leslie Greengard,et al. A new hybrid integral representation for frequency domain scattering in layered media , 2018, Applied and Computational Harmonic Analysis.
[41] Mark Lyon,et al. Windowed Green Function Method for Layered-Media Scattering , 2015, SIAM J. Appl. Math..
[42] O. Bruno,et al. Windowed Green function method for the Helmholtz equation in the presence of multiply layered media , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[43] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[45] C. Turc,et al. Well-posed boundary integral equation formulations and Nystr\"om discretizations for the solution of Helmholtz transmission problems in two-dimensional Lipschitz domains , 2015, 1509.04415.
[46] Lehel Banjai,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Wave Propagation Problems Treated with Convolution Quadrature and Bem Wave Propagation Problems Treated with Convolution Quadrature and Bem , 2022 .
[47] Akash Anand,et al. Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners , 2012 .
[48] Francisco-Javier Sayas,et al. Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .
[49] D. Givoli. Numerical Methods for Problems in Infinite Domains , 1992 .
[50] Jens Markus Melenk,et al. Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.
[51] T. Hagstrom. Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.
[52] Lehel Banjai,et al. Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..
[53] A. Friedman,et al. Modal analysis of homogeneous optical waveguides by the boundary integral formulation and the Nyström method , 1998 .