Stabilizer Slicing: Coherent Error Cancellations in Low-Density Parity-Check Stabilizer Codes.
暂无分享,去创建一个
Michael Newman | Kenneth R Brown | Muyuan Li | K. Brown | Muyuan Li | M. Newman | Dripto M Debroy | D. Debroy
[1] Raymond Laflamme,et al. Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit. , 2016, Physical review letters.
[2] Hector Bombin,et al. Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007 .
[3] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[4] David P. DiVincenzo,et al. Multi-qubit parity measurement in circuit quantum electrodynamics , 2012, 1205.1910.
[5] D. Bacon. Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.
[6] Robert Raussendorf,et al. Topological fault-tolerance in cluster state quantum computation , 2007 .
[7] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[8] Mauricio Gutierrez,et al. Simulating the performance of a distance-3 surface code in a linear ion trap , 2017, 1710.01378.
[9] Keisuke Fujii,et al. Efficient Simulation of Quantum Error Correction Under Coherent Error Based on the Nonunitary Free-Fermionic Formalism. , 2017, Physical review letters.
[10] Richard Kueng,et al. Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.
[11] Steven T. Flammia,et al. Estimating the coherence of noise , 2015, 1503.07865.
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] Kenneth R. Brown,et al. Direct measurement of Bacon-Shor code stabilizers , 2018, Physical Review A.
[14] Sergey Bravyi,et al. Correcting coherent errors with surface codes , 2017, npj Quantum Information.
[15] Raymond Laflamme,et al. Quantum Error Correction Decoheres Noise. , 2018, Physical review letters.
[16] David Poulin,et al. Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.
[17] Raymond Laflamme,et al. Hard decoding algorithm for optimizing thresholds under general Markovian noise , 2016, 1612.02830.
[18] Krysta Marie Svore,et al. Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.
[19] E. Knill. Quantum computing with realistically noisy devices , 2005, Nature.
[20] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[21] Kenneth R. Brown,et al. Errors and pseudothresholds for incoherent and coherent noise , 2016, 1605.03604.
[22] L. DiCarlo,et al. Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.
[23] Jonathan A. Jones. Robust Ising gates for practical quantum computation , 2003 .
[24] K. Brown,et al. Multi-qubit compensation sequences , 2009, 0908.2593.
[25] Panos Aliferis,et al. Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.
[26] Zachary Dutton,et al. Modeling coherent errors in quantum error correction , 2016, 1612.03908.
[27] F. Schmidt-Kaler,et al. Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.
[28] Klaus Molmer,et al. Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.
[29] Sarah Sheldon,et al. Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.
[30] L. DiCarlo,et al. Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.
[31] Dmitri Maslov,et al. Basic circuit compilation techniques for an ion-trap quantum machine , 2016, ArXiv.