SAO 1-Resilient Functions With Lower Absolute Indicator in Even Variables

In 2018, Tang and Maitra presented a class of balanced Boolean functions in <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> variables with the absolute indicator <inline-formula> <tex-math notation="LaTeX">$\Delta _{f}< 2^{n/2}$ </tex-math></inline-formula> and the nonlinearity <inline-formula> <tex-math notation="LaTeX">$NL(f)> 2^{n-1}-2^{n/2}$ </tex-math></inline-formula>, that is, <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> is SAO (strictly almost optimal), for <inline-formula> <tex-math notation="LaTeX">$n=2k\equiv 2\,\,({\mathrm {mod}\,\,}4)$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n\geq 46$ </tex-math></inline-formula> in [IEEE Ttans. Inf. Theory 64 <xref rid="deqn1" ref-type="disp-formula">(1)</xref>: 393-402, 2018]. However, there is no evidence to show that the absolute indicator of any 1-resilient function in <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> variables can be strictly less than <inline-formula> <tex-math notation="LaTeX">$2^{\lfloor ({n+1})/{2}\rfloor }$ </tex-math></inline-formula>, and the previously best known upper bound of which is <inline-formula> <tex-math notation="LaTeX">$5\cdot 2^{n/2}-2^{n/4+2}+4$ </tex-math></inline-formula>. In this paper, we concentrate on two directions. Firstly, to complete Tang and Maitra’s work for <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> being even, we present another class of balanced functions in <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> variables with the absolute indicator <inline-formula> <tex-math notation="LaTeX">$\Delta _{f}< 2^{n/2}$ </tex-math></inline-formula> and the nonlinearity <inline-formula> <tex-math notation="LaTeX">$NL(f)> 2^{n-1}-2^{n/2}$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$n\equiv 0~({\mathrm {mod}~}4)$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n\geq 48$ </tex-math></inline-formula>. Secondly, we obtain two new classes of 1-resilient functions possessing very high nonlinearity and very low absolute indicator, from bent functions and plateaued functions, respectively. Moreover, one class of them achieves the currently known highest nonlinearity <inline-formula> <tex-math notation="LaTeX">$2^{n-1}-2^{n/2-1}-2^{n/4}$ </tex-math></inline-formula>, and the absolute indicator of which is upper bounded by <inline-formula> <tex-math notation="LaTeX">$2^{n/2}+2^{n/4+1}$ </tex-math></inline-formula> that is a new upper bound of the minimum of absolute indicator of 1-resilient functions, as it is clearly optimal than the previously best known upper bound <inline-formula> <tex-math notation="LaTeX">$5\cdot 2^{n/2}-2^{n/4+2}+4$ </tex-math></inline-formula>.

[1]  Deng Tang,et al.  Construction of n-variable (n ≡ 2 mod 4) balanced Boolean functions with maximum absolute value in autocorrelation spectra < 2n/2 , 2016, IACR Cryptol. ePrint Arch..

[2]  Selçuk Kavut,et al.  Modifying Maiorana-McFarland Type Bent Functions for Good Cryptographic Properties and Efficient Implementation , 2019, SIAM J. Discret. Math..

[3]  Yuliang Zheng,et al.  GAC - the Criterion for Global Avalance Characteristics of Cryptographic Functions , 1995, J. Univers. Comput. Sci..

[4]  WeiGuo Zhang,et al.  Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables , 2009, IEEE Transactions on Information Theory.

[5]  Subhamoy Maitra,et al.  Further constructions of resilient Boolean functions with very high nonlinearity , 2002, IEEE Trans. Inf. Theory.

[6]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[7]  Yindong Chen,et al.  Constructing Two Classes of Boolean Functions With Good Cryptographic Properties , 2019, IEEE Access.

[8]  Sugata Gangopadhyay,et al.  Patterson-Wiedemann construction revisited , 2006, Discret. Math..

[9]  Thomas Siegenthaler,et al.  Decrypting a Class of Stream Ciphers Using Ciphertext Only , 1985, IEEE Transactions on Computers.

[10]  Anne Canteaut,et al.  Observations on the DLCT and Absolute Indicators , 2019, IACR Cryptol. ePrint Arch..

[11]  Selçuk Kavut,et al.  Search for Boolean Functions With Excellent Profiles in the Rotation Symmetric Class , 2007, IEEE Transactions on Information Theory.

[12]  Chunlei Xie,et al.  The GAC Property of a Class of 1‐Resilient Functions with High Nonlinearity , 2020 .

[13]  Claude Carlet,et al.  Partially-bent functions , 1992, Des. Codes Cryptogr..

[14]  Hans Dobbertin,et al.  Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity , 1994, FSE.

[15]  Palash Sarkar,et al.  Modifications of Patterson-Wiedemann functions for cryptographic applications , 2002, IEEE Trans. Inf. Theory.

[16]  Subhamoy Maitra,et al.  A Maiorana-McFarland type construction for resilient Boolean functions on n variables (n even) with nonlinearity >2n-1-2n/2+2n/2-2 , 2006, Discret. Appl. Math..

[17]  Zhengchun Zhou,et al.  Construction of Highly Nonlinear 1-Resilient Boolean Functions With Optimal Algebraic Immunity and Provably High Fast Algebraic Immunity , 2017, IEEE Transactions on Information Theory.

[18]  Cunsheng Ding,et al.  The Stability Theory of Stream Ciphers , 1991, Lecture Notes in Computer Science.

[19]  Junpo Yang Constructions of Highly Nonlinear Resilient Vectorial Boolean Functions via Perfect Nonlinear Functions , 2017, IEEE Access.

[20]  William Millan,et al.  AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 29 (2004), Pages 231–247 Simpler methods for generating better Boolean functions with good cryptographic properties , 2022 .

[21]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[22]  Enes Pasalic,et al.  Generalized Maiorana–McFarland Construction of Resilient Boolean Functions With High Nonlinearity and Good Algebraic Properties , 2014, IEEE Transactions on Information Theory.

[23]  Tor Helleseth,et al.  A New Attack on the Filter Generator , 2007, IEEE Transactions on Information Theory.

[24]  Youle Xu,et al.  Constructing Boolean Functions Using Blended Representations , 2019, IEEE Access.

[25]  Yindong Chen,et al.  A Lower Bound of Fast Algebraic Immunity of a Class of 1-Resilient Boolean Functions , 2019, IEEE Access.

[26]  Selçuk Kavut,et al.  Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile , 2018, Des. Codes Cryptogr..

[27]  Enes Pasalic,et al.  Improving the lower bound on the maximum nonlinearity of 1-resilient Boolean functions and designing functions satisfying all cryptographic criteria , 2017, Inf. Sci..

[28]  Martin Hell,et al.  Improved message passing techniques in fast correlation attacks on stream ciphers , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[29]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[30]  Jan-Hendrik Evertse,et al.  Linear Structures in Blockciphers , 1987, EUROCRYPT.

[31]  Selçuk Kavut,et al.  Correction to the paper: Patterson-Wiedemann construction revisited , 2016, Discret. Appl. Math..