A non-iterative method for solving non-linear equations

Abstract In this paper, using a hyperbolic tangent function tanh ( β x ) , β > 0, we develop a non-iterative method to estimate a root of an equation f(x) = 0. The problem of finding root is transformed to evaluating an integral, and thus we need not take account of choosing initial guess. The larger the value of β, the better the approximation to the root. Alternatively we employ the signum function sgn ( x ) instead of the hyperbolic tangent function, which results in an exact formula for the root. Availability of the present method is shown by some numerical examples for which the traditional Newton’s method is not appropriate.

[1]  Jinhai Chen New modified regula falsi method for nonlinear equations , 2007, Appl. Math. Comput..

[2]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[3]  Miodrag S. Petkovic,et al.  A note on some recent methods for solving nonlinear equations , 2007, Appl. Math. Comput..

[4]  Muhammad Aslam Noor,et al.  Three-step iterative methods for nonlinear equations , 2006, Appl. Math. Comput..

[5]  Yitian Li,et al.  A modification of Newton method with third-order convergence , 2006, Appl. Math. Comput..

[6]  Dragoslav Herceg,et al.  On rediscovered methods for solving equations , 1999 .

[7]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[8]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[9]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[10]  Herbert H. H. Homeier A modified Newton method for rootfinding with cubic convergence , 2003 .

[11]  Muhammad Aslam Noor,et al.  Numerical comparison of iterative methods for solving nonlinear equations , 2006, Appl. Math. Comput..

[12]  Mário Basto,et al.  A new iterative method to compute nonlinear equations , 2006, Appl. Math. Comput..

[13]  Muhammad Aslam Noor,et al.  Two-step iterative methods for nonlinear equations , 2006, Applied Mathematics and Computation.

[14]  Sonia Ancoli-Israel,et al.  The sigmoidally transformed cosine curve: a mathematical model for circadian rhythms with symmetric non‐sinusoidal shapes , 2006, Statistics in medicine.

[15]  Nenad Ujevic,et al.  A method for solving nonlinear equations , 2006, Appl. Math. Comput..

[16]  Tai-Fang Li,et al.  New iterative methods for non-linear equations , 2008, Appl. Math. Comput..

[17]  Zhao Yue-qing A modified Newton method with third-order convergence in Banach space , 2006 .