Entropic uncertainty in the background of expanding de Sitter space-time
暂无分享,去创建一个
[1] Patrick J. Coles,et al. Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.
[2] Zhiming Huang,et al. Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field , 2018, Quantum Inf. Process..
[3] Theory of Many-Particle Systems , 1989 .
[4] H. P. Robertson. The Uncertainty Principle , 1929 .
[5] H. Fan,et al. Quantum estimation in an expanding spacetime , 2018, Annals of Physics.
[6] Marco Tomamichel,et al. Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.
[7] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[8] Zehua Tian,et al. Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime , 2014, 1407.4930.
[9] Mark M. Wilde,et al. Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory , 2012, 1204.3803.
[10] Francesco Petruccione,et al. The Theory of Open Quantum Systems , 2002 .
[11] Ming-Liang Hu,et al. Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs , 2012, 1208.1655.
[12] J. Boileau,et al. Conjectured strong complementary information tradeoff. , 2008, Physical review letters.
[13] T. Wei,et al. Mixed-state sensitivity of several quantum-information benchmarks (6 pages) , 2004, quant-ph/0407172.
[14] Ming‐Liang Hu,et al. Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation , 2012, 1212.0319.
[15] Zhiming Huang,et al. Exploration of entropic uncertainty relation for two accelerating atoms immersed in a bath of electromagnetic field , 2018, Quantum Inf. Process..
[16] M. Fang,et al. The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments , 2014, 1811.01155.
[17] H. Fan,et al. Bell inequalities violation within non-Bunch–Davies states , 2018, Physics Letters B.
[18] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[19] Zhiming Huang,et al. Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime , 2017 .
[20] M. Horodecki,et al. Quantum entanglement , 2007, quant-ph/0702225.
[21] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[22] Gerardo Adesso,et al. Generalized Geometric Quantum Speed Limits , 2015, 1507.05848.
[23] J. Kirkwood. The statistical mechanical theory of irreversible processes , 1949 .
[24] Julian Schwinger,et al. Theory of Many-Particle Systems. I , 1959 .
[25] Kraus. Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.
[26] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[27] D. Deutsch. Uncertainty in Quantum Measurements , 1983 .
[28] D. Sen,et al. The Uncertainty Relations in Quantum Mechanics , 2014 .
[29] Rudolf Haag,et al. On the equilibrium states in quantum statistical mechanics , 1967 .
[30] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[31] M. Suhail Zubairy,et al. Reversing entanglement change by a weak measurement , 2010 .
[32] R. Bousso,et al. Conformal vacua and entropy in de Sitter space , 2001, hep-th/0112218.
[33] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[34] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[35] Iwo Bialynicki-Birula. Formulation of the uncertainty relations in terms of the Rényi entropies , 2006 .
[36] Stephen M. Barnett,et al. Methods in Theoretical Quantum Optics , 1997 .
[37] Zhiming Huang,et al. Protecting quantum Fisher information in curved space-time , 2018 .
[38] Maassen,et al. Generalized entropic uncertainty relations. , 1988, Physical review letters.
[39] Arun Kumar Pati,et al. Quantum speed limit for mixed states using an experimentally realizable metric , 2014, 1403.5182.
[40] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[41] Hongwei Yu. Open quantum system approach to the Gibbons-Hawking effect of de Sitter space-time. , 2011, Physical review letters.
[42] E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen , 1927 .
[43] Zhiming Huang,et al. Dynamics of quantum correlation and coherence in de Sitter universe , 2017, Quantum Inf. Process..