Entropic uncertainty in the background of expanding de Sitter space-time

We study the dynamics of quantum-memory-assisted entropic uncertainty for a hybrid qutrit–qubit system interacting with fluctuating quantum scalar field in the background of expanding de Sitter space. We firstly derive the master equation that the system evolution obeys. As evolution time goes by, for different initial states, entropic uncertainty develops to different fixed values for different parameter values, whereas entanglement always decays to zero, and there exist monotonous relations between entropic uncertainty, entanglement and various parameters for a fixed initial state, but mixedness behaves differently with entropic uncertainty and entanglement. Further it is found that the entropic uncertainty closely associated with the entanglement and mixedness. In addition, it is shown that the entropic uncertainty can be manipulated effectively via the weak measurement reversal. Our study would give some useful insights about the behavior characteristics of high-dimensional quantum system in expanding de Sitter space-time and may be useful to the tasks of quantum information processing of curved space-time since the uncertainty principle plays vital role in quantum information science and technology.

[1]  Patrick J. Coles,et al.  Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.

[2]  Zhiming Huang,et al.  Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field , 2018, Quantum Inf. Process..

[3]  Theory of Many-Particle Systems , 1989 .

[4]  H. P. Robertson The Uncertainty Principle , 1929 .

[5]  H. Fan,et al.  Quantum estimation in an expanding spacetime , 2018, Annals of Physics.

[6]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[7]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[8]  Zehua Tian,et al.  Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime , 2014, 1407.4930.

[9]  Mark M. Wilde,et al.  Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory , 2012, 1204.3803.

[10]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[11]  Ming-Liang Hu,et al.  Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs , 2012, 1208.1655.

[12]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[13]  T. Wei,et al.  Mixed-state sensitivity of several quantum-information benchmarks (6 pages) , 2004, quant-ph/0407172.

[14]  Ming‐Liang Hu,et al.  Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation , 2012, 1212.0319.

[15]  Zhiming Huang,et al.  Exploration of entropic uncertainty relation for two accelerating atoms immersed in a bath of electromagnetic field , 2018, Quantum Inf. Process..

[16]  M. Fang,et al.  The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments , 2014, 1811.01155.

[17]  H. Fan,et al.  Bell inequalities violation within non-Bunch–Davies states , 2018, Physics Letters B.

[18]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[19]  Zhiming Huang,et al.  Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime , 2017 .

[20]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[21]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[22]  Gerardo Adesso,et al.  Generalized Geometric Quantum Speed Limits , 2015, 1507.05848.

[23]  J. Kirkwood The statistical mechanical theory of irreversible processes , 1949 .

[24]  Julian Schwinger,et al.  Theory of Many-Particle Systems. I , 1959 .

[25]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[26]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[27]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[28]  D. Sen,et al.  The Uncertainty Relations in Quantum Mechanics , 2014 .

[29]  Rudolf Haag,et al.  On the equilibrium states in quantum statistical mechanics , 1967 .

[30]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[31]  M. Suhail Zubairy,et al.  Reversing entanglement change by a weak measurement , 2010 .

[32]  R. Bousso,et al.  Conformal vacua and entropy in de Sitter space , 2001, hep-th/0112218.

[33]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  Iwo Bialynicki-Birula Formulation of the uncertainty relations in terms of the Rényi entropies , 2006 .

[36]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[37]  Zhiming Huang,et al.  Protecting quantum Fisher information in curved space-time , 2018 .

[38]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[39]  Arun Kumar Pati,et al.  Quantum speed limit for mixed states using an experimentally realizable metric , 2014, 1403.5182.

[40]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[41]  Hongwei Yu Open quantum system approach to the Gibbons-Hawking effect of de Sitter space-time. , 2011, Physical review letters.

[42]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[43]  Zhiming Huang,et al.  Dynamics of quantum correlation and coherence in de Sitter universe , 2017, Quantum Inf. Process..