Задача Монжа - Канторовича: достижения, связи и перспективы@@@The Monge - Kantorovich problem: achievements, connections, and perspectives

[1]  R. McCann,et al.  Free boundaries in optimal transport and Monge-Ampere obstacle problems , 2010 .

[2]  Solution of the Monge–Ampère equation on Wiener space for general log-concave measures , 2006 .

[3]  J. Rodrigues,et al.  Recent Advances in the Theory and Applications of Mass Transport , 2004 .

[4]  Karl-Theodor Sturm,et al.  Entropic Measure and Wasserstein Diffusion , 2007, 0704.0704.

[5]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[6]  L. Ambrosio Lecture Notes on Optimal Transport Problems , 2003 .

[7]  A Note on the Equality in the Monge and Kantorovich Problems , 2006 .

[8]  R. Arens,et al.  On embedding uniform and topological spaces. , 1956 .

[9]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[10]  Анатолий Моисеевич Вершик,et al.  Универсальное пространство Урысона, метрические тройки Громова и случайные метрики на натуральном ряде@@@The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers , 1998 .

[11]  R. McCann,et al.  Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs , 2001 .

[12]  L. Pascale,et al.  Minimal measures, one-dimensional currents and the Monge–Kantorovich problem , 2006 .

[13]  On displacement interpolation of measures involved in Brenier’s theorem , 2011 .

[14]  A. Figalli The Optimal Partial Transport Problem , 2010 .

[15]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[16]  Точные решения одномерной задачи Монжа - Канторовича@@@Precise solutions of the one-dimensional Monge - Kantorovich problem , 2004 .

[17]  L. Rüschendorf,et al.  A general duality theorem for marginal problems , 1995 .

[18]  A. Figalli,et al.  Optimal transportation on non-compact manifolds , 2007, 0711.4519.

[19]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[20]  Nestor Guillen,et al.  Five lectures on optimal transportation: Geometry, regularity and applications , 2010, 1011.2911.

[21]  P. Castillon Submanifolds, isoperimetric inequalities and optimal transportation , 2009, 0908.2711.

[22]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[23]  V. Bogachev,et al.  Triangular transformations of measures , 2005 .

[24]  F. Barthe,et al.  Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry , 2004, math/0407219.

[25]  Замечание о равенстве в задачах Монжа и Канторовича@@@A remark on the equality in Monge and Kantorovich problems , 2005 .

[26]  Леонид Витальевич Канторович (к 100-летию со дня рождения)@@@Leonid Vital'evich Kantorovich (on the 100th anniversary of his birth) , 2012 .

[27]  A. Üstünel,et al.  The Notion of Convexity and Concavity on Wiener Space , 2000, 0809.0812.

[28]  I. Fragalà,et al.  Continuity of an optimal transport in Monge problem , 2005 .

[29]  N. Trudinger,et al.  The Monge-Ampµere equation and its geometric applications , 2008 .

[30]  Felix Otto,et al.  Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..

[31]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[32]  Balls have the worst best Sobolev inequalities. Part II: variants and extensions , 2007 .

[33]  W. Schachermayer,et al.  Duality for Borel measurable cost functions , 2008, 0807.1468.

[34]  A. Vershik Some remarks on the infinite-dimensional problems of linear programming , 1970 .

[35]  J. Moser On the volume elements on a manifold , 1965 .

[36]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[37]  Karl-Theodor Sturm,et al.  Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces , 2010, 1003.2116.

[38]  E. Milman Isoperimetric and Concentration Inequalities - Equivalence under Curvature Lower Bound , 2009, 0902.1560.

[39]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[40]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[41]  Feng-Yu Wang,et al.  Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .

[42]  Patrick Cattiaux,et al.  On quadratic transportation cost inequalities , 2006 .

[43]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[44]  Kaising Tso,et al.  Deforming a hypersurface by its Gauss-Kronecker curvature , 1985 .

[45]  Соболевская регулярность транспортировки вероятностных мер и транспортные неравенства@@@Sobolev regularity of transportation of probability measures and transportation inequalities , 2012 .

[46]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[47]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[48]  V. Bogachev,et al.  Integrability of Absolutely Continuous Transformations of Measures and Applications to Optimal Mass Transportation , 2006 .

[49]  F. Cavalletti,et al.  The Monge problem in Wiener space , 2011, 1103.2798.

[50]  On duality theory for non-topological variants of the mass transfer problem , 1997 .

[51]  B. Nazaret Best constant in Sobolev trace inequalities on the half-space , 2006 .

[52]  L. Rüschendorf On c-optimal random variables , 1996 .

[53]  Jinghai Shao,et al.  Wasserstein space over the Wiener space , 2010 .

[54]  R. McCann,et al.  Ricci flow, entropy and optimal transportation , 2010 .

[55]  N. Krylov Fully nonlinear second order elliptic equations : recent development , 1997 .

[56]  Walter Schachermayer,et al.  Optimal and better transport plans , 2008, 0802.0646.

[57]  Modified log-Sobolev inequalities and isoperimetry , 2006, math/0608681.

[58]  К. В. Медведев,et al.  Треугольные преобразования мер@@@Triangular transformations of measures , 2005 .

[59]  L. Ambrosio,et al.  Geodesics in the Space of Measure-Preserving Maps and Plans , 2007, math/0701848.

[60]  Anatoly M. Vershik,et al.  Kantorovich Metric: Initial History and Little-Known Applications , 2005 .

[61]  M. Ledoux,et al.  Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .

[62]  Соболевская регулярность транспортировки вероятностных мер и транспортные неравенства , 2012 .

[63]  Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost , 2010 .

[64]  Mass transport generated by a flow of Gauss maps , 2008, 0803.1436.

[65]  Young measures, superposition and transport , 2007, math/0701451.

[66]  V. Levin Abstract Cyclical Monotonicity and Monge Solutions for the General Monge–Kantorovich Problem , 1999 .

[67]  Владимир Игоревич Богачев,et al.  Интегрируемость абсолютно непрерывных преобразований мер и применения к оптимальному переносу@@@Integrability of absolutely continuous measure transformations and applications to optimal transportation , 2005 .

[68]  Двойственность Монжа-Канторовича и ее применение в теории полезности , 2011 .

[69]  A. Pratelli,et al.  On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation , 2007 .

[70]  L. Evans Partial Differential Equations and Monge-Kantorovich Mass Transfer , 1997 .

[71]  A. Guillin,et al.  Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.

[72]  Anatolii Moiseevich Vershik,et al.  The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers , 1998 .

[73]  A. Figalli,et al.  A mass transportation approach to quantitative isoperimetric inequalities , 2010 .

[74]  N. Trudinger,et al.  On the Monge mass transfer problem , 2001 .

[75]  D. A. Edwards On the Kantorovich–Rubinstein theorem , 2011 .

[76]  A proof of Sudakov theorem with strictly convex norms , 2011 .

[77]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[78]  S. Rachev The Monge–Kantorovich Mass Transference Problem and Its Stochastic Applications , 1985 .

[79]  Xu Wang Some counterexamples to the regularity of Monge-Ampère equations , 1995 .

[80]  Соболевская регулярность для бесконечномерного уравнения Монжа-Ампера , 2012 .

[81]  Guillaume Carlier,et al.  From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..

[82]  N. Gozlan A characterization of dimension free concentration in terms of transportation inequalities , 2008, 0804.3089.

[83]  C. Villani,et al.  Regularity of optimal transport in curved geometry: The nonfocal case , 2010 .

[84]  Sobolev regularity for the Monge-Ampere equation in the Wiener space. , 2011, 1110.1822.

[85]  C. Villani,et al.  Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities , 2005 .

[86]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[87]  V. Zolotarev On the Continuity of Stochastic Sequences Generated by Recurrent Processes , 1976 .

[88]  Paul-Marie Samson,et al.  A new characterization of Talagrand's transport-entropy inequalities and applications , 2011, 1104.1303.

[89]  A. Vershik Dynamics of metrics in measure spaces and their asymptotic invariants , 2009 .

[90]  V. Bogachev,et al.  Nonlinear Transformations of Convex Measures , 2006 .

[91]  Luigi Ambrosio,et al.  Existence of optimal transport maps for crystalline norms , 2004 .

[92]  X. Cabré Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions , 2007 .

[93]  Precise solutions of the one-dimensional Monge-Kantorovich problem , 2004 .

[94]  O. Rothaus Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities , 1985 .

[95]  L. Rüschendorf,et al.  On the Monge-Kantorovitch Duality Theorem , 2001 .

[96]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[97]  Jean-Pierre Bourguignon,et al.  Ricci curvature and measures , 2009 .

[98]  J. Lott Optimal transport and Perelman’s reduced volume , 2008, 0804.0343.

[99]  S. Sodin,et al.  An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies , 2007, math/0703857.

[100]  A. Guillin,et al.  Modified logarithmic Sobolev inequalities and transportation inequalities , 2004, math/0405520.

[101]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[102]  Christian L'eonard,et al.  Transport Inequalities. A Survey , 2010, 1003.3852.

[103]  P. Cattiaux,et al.  A note on Talagrand’s transportation inequality and logarithmic Sobolev inequality , 2008, 0810.5435.

[104]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[105]  Ludovic Rifford,et al.  Mass Transportation on Sub-Riemannian Manifolds , 2008, 0803.2917.

[106]  A. V. Kolesnikov Глобальные гeльдеровы оценки для оптимальной транспортировки@@@Global Hölder Estimates for Optimal Transportation , 2008, 0810.5043.

[107]  К теории двойственности для нетопологических вариантов задачи о перемещении масс@@@On duality theory for non-topological variants of the mass transfer problem , 1997 .

[108]  Dario Cordero-Erausquin,et al.  Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .

[109]  W. Gangbo,et al.  Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .

[110]  Wasserstein Distance on Configuration Space , 2006, math/0602134.

[111]  V. Zolotarev METRIC DISTANCES IN SPACES OF RANDOM VARIABLES AND THEIR DISTRIBUTIONS , 1976 .

[112]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[113]  V. Levin A FORMULA FOR THE OPTIMAL VALUE IN THE MONGE-KANTOROVICH PROBLEM WITH A SMOOTH COST FUNCTION, AND A CHARACTERIZATION OF CYCLICALLY MONOTONE MAPPINGS , 1992 .

[114]  N. Gozlan Characterization of Talagrand's like transportation-cost inequalities on the real line , 2006, math/0608241.

[115]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[116]  Leonid Vital'evich Kantorovich (on the 100th anniversary of his birth) , 2012 .

[117]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[118]  A. Figalli,et al.  $W^{2,1}$ regularity for solutions of the Monge-Amp\`ere equation , 2011, 1111.7207.

[119]  Emanuel Milman,et al.  Properties of isoperimetric, functional and Transport-Entropy inequalities via concentration , 2009, 0909.0207.

[120]  Balls have the worst best Sobolev inequalities , 2005 .

[121]  A. Figalli,et al.  Partial regularity of brenier solutions of the monge-ampère equation , 2010 .

[122]  H. Kellerer Duality theorems for marginal problems , 1984 .

[123]  Integral Estimates for Transport Densities , 2004 .

[124]  V. Oliker Embedding Sn into Rn+1 with given integral Gauss curvature and optimal mass transport on Sn , 2007 .

[125]  Young-Heon Kim,et al.  A generalization of Caffarelli’s contraction theorem via (reverse) heat flow , 2010, 1002.0373.

[126]  Properties of the solutions to the Monge–Ampère equation , 2004 .

[128]  David A. Edwards,et al.  A simple proof in Monge{Kantorovich duality theory , 2010 .

[129]  A. Vershik Many-valued measure-preserving mappings (polymorphisms) and Markovian operators , 1983 .

[130]  Transportation-information inequalities for Markov processes (II) : relations with other functional inequalities , 2009, 0902.2101.

[131]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[132]  A. Kolesnikov Weak regularity of Gauss mass transport , 2009, 0904.1852.

[133]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[134]  N. Gozlan,et al.  A large deviation approach to some transportation cost inequalities , 2005, math/0510601.

[135]  Anatoly M. Vershik,et al.  Random Metric Spaces and Universality , 2004, math/0402263.

[136]  V L Levin,et al.  THE PROBLEM OF MASS TRANSFER WITH A DISCONTINUOUS COST FUNCTION AND A MASS STATEMENT OF THE DUALITY PROBLEM FOR CONVEX EXTREMAL PROBLEMS , 1979 .

[137]  Экстремальные свойства полупространств для сферически инвариантных мер , 1974 .

[138]  A. Vershik,et al.  Random Metric Spaces and Universality , 2004 .

[139]  Kathrin Bacher On Borell-Brascamp-Lieb Inequalities on Metric Measure Spaces , 2010 .

[140]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[141]  Poincare Inequalities and Moment Maps , 2011, 1104.2791.

[142]  C. Villani,et al.  A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .

[143]  Nicola Gigli,et al.  A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions , 2010 .

[144]  Нелинейные преобразования выпуклых мер@@@Nonlinear transformations of convex measures , 2005 .

[145]  J. Lott Some Geometric Calculations on Wasserstein Space , 2006, math/0612562.

[146]  ON THE MONGE–AMPÈRE EQUATION IN INFINITE DIMENSIONS , 2005 .

[147]  L. Rüschendorf,et al.  Duality and perfect probability spaces , 1996 .

[148]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[149]  Global Hölder estimates for optimal transportation , 2010 .

[150]  A. Kolesnikov Convexity inequalities and optimal transport of infinite-dimensional measures , 2004 .

[151]  R. Fortet,et al.  Convergence de la répartition empirique vers la répartition théorique , 1953 .

[152]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[153]  G. Loeper On the regularity of solutions of optimal transportation problems , 2009 .

[154]  Luis A. Caffarelli,et al.  Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .

[155]  N. Trudinger,et al.  Interior C 2,α Regularity for Potential Functions in Optimal Transportation , 2009 .

[156]  Arnaud Guillin,et al.  Transportation-information inequalities for Markov processes , 2007, 0706.4193.

[157]  ℒ-optimal transportation for Ricci flow , 2009 .

[158]  Kazumasa Kuwada,et al.  Duality on gradient estimates and Wasserstein controls , 2009, 0910.1741.

[159]  Thierry Champion,et al.  The Monge problem for strictly convex norms in Rd , 2010 .

[160]  F. Barthe,et al.  Mass Transport and Variants of the Logarithmic Sobolev Inequality , 2007, 0709.3890.

[161]  S. Bobkov,et al.  Hypercontractivity of Hamilton-Jacobi equations , 2001 .

[162]  R. McCann,et al.  Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.

[163]  Y. Ollivier A survey of Ricci curvature for metric spaces and Markov chains , 2010 .

[164]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[165]  Giuseppe Savaré,et al.  Contraction of general transportation costs along solutions to Fokker–Planck equations with monotone drifts , 2010, 1002.0088.

[166]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[167]  Optimality Conditions and Exact Solutions to the Two-Dimensional Monge-Kantorovich Problem , 2006 .

[168]  R. McCann,et al.  Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport , 2006 .

[169]  A. Vershik,et al.  Linearly rigid metric spaces and the embedding problem , 2006, math/0611049.