An Improved Singularity Analysis for ASCAT Wind Quality Control: Application to Low Winds

Singularity analysis has proven to be a complementary tool to the Advanced Scatterometer (ASCAT) inversion residual (or maximum likelihood estimator) in terms of wind quality control (QC). In this paper, a new implementation scheme of singularity exponent (SE) is developed for ASCAT data analysis. It combines the wavelet projections of the gradient measurements of multiple parameters into the analysis, ensuring that the analyzed parameters contribute equally to the final singularity map. Therefore, the underlying geophysical phenomena in the different ASCAT-derived parameters can be effectively revealed simultaneously on a unique map of SEs. The validation using both buoy winds and European Centre for Medium-Range Weather Forecasting forecast wind output shows that the newly derived SE significantly improves the current ASCAT wind QC. In particular, poor-quality ASCAT measurements at low-wind and high-variability conditions (w <; 4 m/s) can be effectively screened using the new SE.

[1]  Wenming Lin,et al.  On the characteristics of ASCAT wind direction ambiguities , 2012 .

[2]  Marcos Portabella,et al.  A New Method for Improving Scatterometer Wind Quality Control , 2012, IEEE Geoscience and Remote Sensing Letters.

[3]  Antonio Turiel,et al.  The Multifractal Structure of Contrast Changes in Natural Images: From Sharp Edges to Textures , 2000, Neural Computation.

[4]  Antonio Turiel,et al.  Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I. Singularity analysis , 2008 .

[5]  M. Drinkwater,et al.  The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers , 2002 .

[6]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[7]  A. Stoffelen,et al.  On mesoscale analysis and ASCAT ambiguity removal , 2016 .

[8]  Hans Bonekamp,et al.  Analysis of ASCAT Ocean Backscatter Measurement Noise , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Marcos Portabella,et al.  Scatterometer Backscatter Uncertainty Due to Wind Variability , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Wenming Lin,et al.  ASCAT wind quality under high subcell wind variability conditions , 2015 .

[11]  H. Hersbach Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF , 2010 .

[12]  Wenming Lin,et al.  Rain Effects on ASCAT-Retrieved Winds: Toward an Improved Quality Control , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Wenming Lin,et al.  Rain Identification in ASCAT Winds Using Singularity Analysis , 2014, IEEE Geoscience and Remote Sensing Letters.

[14]  David L. T. Anderson,et al.  Scatterometer Data Interpretation: Measurement Space and Inversion , 1997 .

[15]  Oriol Pont,et al.  An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals , 2011, IWCIA.

[16]  Wenming Lin,et al.  ASCAT Wind Quality Control Near Rain , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Antonio Turiel,et al.  The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines , 2009 .

[18]  Joaquim Ballabrera-Poy,et al.  On the potential of data assimilation to generate SMOS-Level 4 maps of sea surface salinity , 2014 .

[19]  Ad Stoffelen,et al.  Ambiguity removal and assimilation of scatterometer data , 1997 .