Relativized Alternation and Space-Bounded Computation

The prototypical results of relativized complexity theory are the theorems of Baker, Gill, and Solovay that the answer to the relativized P=? NP question depends on the oracle. Such results are commonly taken as evidence of the difficulty of solving the unrelativized case, on the assumption that simple simulations and diagonalizations generalize to oracle machines. Many simple simulations, however, fail in the presence of an oracle. Most of these simulations, but not all, involve space-bounded machines, for which there is no agreement on the proper model. The failure of any unrelativized simulation in the relativized case is shown to be due to unequal oracle access. In order to determine the proper oracle access for space-bounded machines, alternating machines are considered. A model in which ALOGSPACE = P, AP = PSPACE, etc., hold relative to any oracle is given. The alternation model gives a new model for deterministic space-bounded oracle machines and also affects time-bounded oracle machines slightly. In the new model, nearly all known Turing machine simulations hold relative to any oracle.

[1]  Janos Simon,et al.  Space-Bounded Hierarchies and Probabilistic Computations , 1984, J. Comput. Syst. Sci..

[2]  Richard J. Lipton,et al.  Alternating Pushdown and Stack Automata , 1984, SIAM J. Comput..

[3]  Dana Angluin,et al.  On Counting Problems and the Polynomial-Time Hierarchy , 1980, Theor. Comput. Sci..

[4]  Joel I. Seiferas,et al.  Limitations on Separating Nondeterministic Complexity Classes , 1981, SIAM J. Comput..

[5]  Stephen A. Cook,et al.  Characterizations of Pushdown Machines in Terms of Time-Bounded Computers , 1971, J. ACM.

[6]  William I. Gasarch Oracles for Deterministic versus Alternating Classes , 1987, SIAM J. Comput..

[7]  Christopher B. Wilson Parallel Computation and the NC Hierarchy Relativized , 1986, Computational Complexity Conference.

[8]  Nancy A. Lynch Log Space Machines with Multiple Oracle Tapes , 1978, Theor. Comput. Sci..

[9]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[10]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[11]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[12]  Jeffrey D. Ullman,et al.  Relations Between Time and Tape Complexities , 1968, JACM.

[13]  Istvan Simon On some subrecursive reducibilities , 1977 .

[14]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[15]  H. Jung Relationships between Probabilistic and Deterministic Tape Complexity , 1981, MFCS.

[16]  Shlomo Moran,et al.  Some Results on Relativized Deterministic and Nondeterministic Time Hierarchies , 1981, J. Comput. Syst. Sci..

[17]  Leslie G. Valiant,et al.  On Time Versus Space , 1977, JACM.

[18]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[19]  M. I. Dekhtyar Impossibility of Eliminating Complete Enumeration in Computing Functions from Their Diagrams , 1970 .

[20]  Arnold L. Rosenberg,et al.  Real-Time Simulation of Multihead Tape Units , 1972, JACM.

[21]  Theodore P. Baker,et al.  A second step toward the polynomial hierarchy , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[22]  Jonathan F. Buss Relativized Alternation , 1986, Computational Complexity Conference.

[23]  Carol Tretkoff Bounded Oracles and Complexity Classes Inside Linear Space , 1986, Computational Complexity Conference.

[24]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[25]  Patrick C. Fischer,et al.  Refining Nondeterminism in Relativized Polynomial-Time Bounded Computations , 1980, SIAM J. Comput..

[26]  Juris Hartmanis Solvable problems with conflicting relativizations , 1985, Bull. EATCS.

[27]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[28]  Pekka Orponen,et al.  Complexity Classes of Alternating Machines with Oracles , 1983, ICALP.

[29]  José L. Balcázar,et al.  On Bounded Query Machines , 1985, Theor. Comput. Sci..

[30]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[31]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[32]  Allan Borodin,et al.  Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines , 1984, Inf. Control..