Proteomics of the Synapse – A Quantitative Approach to Neuronal Plasticity*

The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.

[1]  Fan Zhang,et al.  PEPPI: a peptidomic database of human protein isoforms for proteomics experiments , 2010, BMC Bioinformatics.

[2]  D. Schmitz,et al.  Structural and functional plasticity of the cytoplasmic active zone , 2011, Current Opinion in Neurobiology.

[3]  E. Schuman,et al.  Cell-selective metabolic labeling of proteins. , 2009, Nature chemical biology.

[4]  P. Guest,et al.  Proteomic approaches to unravel the complexity of schizophrenia , 2012, Expert review of proteomics.

[5]  M. Sheng,et al.  The postsynaptic organization of synapses. , 2011, Cold Spring Harbor perspectives in biology.

[6]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[7]  D. Black,et al.  Alternative pre-mRNA splicing in neurons: growing up and extending its reach. , 2013, Trends in genetics : TIG.

[8]  K. Harris,et al.  Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes , 1999, The Journal of Neuroscience.

[9]  Mary B. Kennedy,et al.  Spine architecture and synaptic plasticity , 2005, Trends in Neurosciences.

[10]  R. Petralia,et al.  Synaptic activity bidirectionally regulates a novel sequence‐specific S‐Q phosphoproteome in neurons , 2014, Journal of neurochemistry.

[11]  Carolyn R Bertozzi,et al.  A chemical approach for identifying O-GlcNAc-modified proteins in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Pääbo,et al.  Organization and Evolution of Brain Lipidome Revealed by Large-Scale Analysis of Human, Chimpanzee, Macaque, and Mouse Tissues , 2015, Neuron.

[13]  Atsushi Miyawaki,et al.  PKC Signaling Mediates Global Enhancement of Excitatory Synaptogenesis in Neurons Triggered by Local Contact with Astrocytes , 2004, Neuron.

[14]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[15]  M. Krug,et al.  Glycosylation of proteins during a critical time window is necessary for the maintenance of long-term potentiation in the hippocampal CA1 region , 1999, Neuroscience.

[16]  J. Douglas Armstrong,et al.  G2Cdb: the Genes to Cognition database , 2008, Nucleic Acids Res..

[17]  J. Yates,et al.  Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice , 2008, Proceedings of the National Academy of Sciences.

[18]  Martin H. Schaefer,et al.  SynSysNet: integration of experimental data on synaptic protein–protein interactions with drug-target relations , 2012, Nucleic Acids Res..

[19]  Chong Yu,et al.  A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Sobue,et al.  Determination of absolute protein numbers in single synapses by a GFP-based calibration technique , 2005, Nature Methods.

[21]  Shigeo Okabe,et al.  Molecular anatomy of the postsynaptic density , 2007, Molecular and Cellular Neuroscience.

[22]  Nicholas A. Frost,et al.  Multiple Spatial and Kinetic Subpopulations of CaMKII in Spines and Dendrites as Resolved by Single-Molecule Tracking PALM , 2014, The Journal of Neuroscience.

[23]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[24]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[25]  Stephen Smith,et al.  Automated Analysis of a Diverse Synapse Population , 2013, PLoS Comput. Biol..

[26]  C. Hoogenraad,et al.  The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far? , 2015, Experimental cell research.

[27]  S. Palay,et al.  The morphology of synapses , 1996, Journal of neurocytology.

[28]  Melanie Laßek,et al.  The synaptic proteome , 2014, Cell and Tissue Research.

[29]  S. Grant,et al.  Characterization of the proteome, diseases and evolution of the human postsynaptic density , 2011, Nature Neuroscience.

[30]  R. Simpson,et al.  Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. , 2012, Analytical chemistry.

[31]  S. Grant,et al.  Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome , 2006, Journal of neurochemistry.

[32]  P. Caroni,et al.  Structural plasticity upon learning: regulation and functions , 2012, Nature Reviews Neuroscience.

[33]  D. Dieterich Chemical reporters for the illumination of protein and cell dynamics , 2010, Current Opinion in Neurobiology.

[34]  R. Balice-Gordon,et al.  Astrocytes Regulate Inhibitory Synapse Formation via Trk-Mediated Modulation of Postsynaptic GABAA Receptors , 2005, The Journal of Neuroscience.

[35]  Bruno Domon,et al.  Advances in high‐resolution accurate mass spectrometry application to targeted proteomics , 2015, Proteomics.

[36]  T. Jongens,et al.  A non-canonical start codon in the Drosophila fragile X gene yields two functional isoforms , 2011, Neuroscience.

[37]  Jennifer A. Prescher,et al.  Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids , 2006, Proceedings of the National Academy of Sciences.

[38]  C. Garner,et al.  Molecular determinants of presynaptic active zones , 2000, Current Opinion in Neurobiology.

[39]  W. Freeman,et al.  Proteomics for Protein Expression Profiling in Neuroscience , 2004, Neurochemical Research.

[40]  Jonathan C Trinidad,et al.  N- and O-Glycosylation in the Murine Synaptosome* , 2013, Molecular & Cellular Proteomics.

[41]  John R. Yates,et al.  Identification of Long-Lived Proteins Reveals Exceptional Stability of Essential Cellular Structures , 2013, Cell.

[42]  Alma L. Burlingame,et al.  Comprehensive Identification of Phosphorylation Sites in Postsynaptic Density Preparations*S , 2006, Molecular & Cellular Proteomics.

[43]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[44]  Yanji Xu,et al.  Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. , 2012, Journal of proteome research.

[45]  A. Ewing,et al.  Spatial neuroproteomics using imaging mass spectrometry. , 2015, Biochimica et biophysica acta.

[46]  Michael J. Sweredoski,et al.  Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT) , 2012, Proteomics.

[47]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[48]  D. Baehrens,et al.  Regional Diversity and Developmental Dynamics of the AMPA-Receptor Proteome in the Mammalian Brain , 2014, Neuron.

[49]  P. Guest,et al.  Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders , 2014, Molecular Autism.

[50]  Stephen J. Smith,et al.  Deep molecular diversity of mammalian synapses: why it matters and how to measure it , 2012, Nature Reviews Neuroscience.

[51]  M. Kreutz,et al.  Ca2+ sensor proteins in dendritic spines: a race for Ca2+ , 2012, Front. Mol. Neurosci..

[52]  T. Oertner,et al.  Calcium regulation of actin dynamics in dendritic spines. , 2005, Cell calcium.

[53]  Eckart D Gundelfinger,et al.  Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics , 2006, PLoS biology.

[54]  S Purcell,et al.  De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia , 2011, Molecular Psychiatry.

[55]  Rita Gerardy-Schahn,et al.  Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. , 2014, Physiological reviews.

[56]  Yen-Chung Chang,et al.  Studying the Protein Organization of the Postsynaptic Density by a Novel Solid Phase- and Chemical Cross-linking-based Technology* , 2006, Molecular & Cellular Proteomics.

[57]  J. Bockmann,et al.  A Non-Canonical Initiation Site Is Required for Efficient Translation of the Dendritically Localized Shank1 mRNA , 2014, PloS one.

[58]  C. Holt,et al.  The Central Dogma Decentralized: New Perspectives on RNA Function and Local Translation in Neurons , 2013, Neuron.

[59]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[60]  Florian Gnad,et al.  Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints , 2010, Cell.

[61]  Tao Wang,et al.  SynaptomeDB: an ontology-based knowledgebase for synaptic genes , 2012, Bioinform..

[62]  Takashi Kawashima,et al.  Inverse Synaptic Tagging of Inactive Synapses via Dynamic Interaction of Arc/Arg3.1 with CaMKIIβ , 2012, Cell.

[63]  G. Lubec,et al.  Proteins linked to extinction in contextual fear conditioning in the C57BL/6J mouse , 2011, Proteomics.

[64]  F. Gomez-Pinilla,et al.  Exercise affects energy metabolism and neural plasticity‐related proteins in the hippocampus as revealed by proteomic analysis , 2006, The European journal of neuroscience.

[65]  Kathryn S Lilley,et al.  All about DIGE: quantification technology for differential-display 2D-gel proteomics , 2004, Expert review of proteomics.

[66]  R. Malenka,et al.  NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). , 2012, Cold Spring Harbor perspectives in biology.

[67]  S. Sze,et al.  Brain site-specific proteome changes in aging-related dementia , 2013, Experimental & Molecular Medicine.

[68]  Robert Weismantel,et al.  SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations , 2012, Front. Syn. Neurosci..

[69]  C. Carlotti,et al.  Phosphoproteomic analysis of synaptosomes from human cerebral cortex. , 2005, Journal of proteome research.

[70]  A. Burlingame,et al.  Activity-dependent Protein Dynamics Define Interconnected Cores of Co-regulated Postsynaptic Proteins* , 2012, Molecular & Cellular Proteomics.

[71]  N. Henninger,et al.  Spatial learning induces predominant downregulation of cytosolic proteins in the rat hippocampus , 2007, Genes, brain, and behavior.

[72]  E. Schuman,et al.  In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons , 2010, Nature Neuroscience.

[73]  Jennifer A. Prescher,et al.  Rapid and selective detection of fatty acylated proteins using ω-alkynyl-fatty acids and click chemistry[S] , 2010, Journal of Lipid Research.

[74]  A. Smit,et al.  Proteomics analysis of immuno-precipitated synaptic protein complexes. , 2009, Journal of proteomics.

[75]  A. Burlingame,et al.  Global Identification and Characterization of Both O-GlcNAcylation and Phosphorylation at the Murine Synapse* , 2012, Molecular & Cellular Proteomics.

[76]  Kyla Pennington,et al.  Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia , 2008, Proteomics.

[77]  C. Davies,et al.  Plasticity‐related regulation of the hippocampal proteome , 2006, The European journal of neuroscience.

[78]  Tobias Bonhoeffer,et al.  Balance and Stability of Synaptic Structures during Synaptic Plasticity , 2014, Neuron.

[79]  P. Kalivas,et al.  AKAP Signaling in Reinstated Cocaine Seeking Revealed by iTRAQ Proteomic Analysis , 2011, The Journal of Neuroscience.

[80]  A. Nairn,et al.  Proteomic analysis of activity-dependent synaptic plasticity in hippocampal neurons. , 2007, Journal of proteome research.

[81]  Douglas J Slotta,et al.  Composition of the Synaptic PSD-95 Complex*S , 2007, Molecular & Cellular Proteomics.

[82]  Daniel B. McClatchy,et al.  Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis. , 2013, Methods.

[83]  J. Dubochet,et al.  The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Yingming Zhao,et al.  The Presynaptic Particle Web Ultrastructure, Composition, Dissolution, and Reconstitution , 2001, Neuron.

[85]  G. Dawson Measuring brain lipids. , 2015, Biochimica et biophysica acta.

[86]  Sinem K. Saka,et al.  Secondary-Ion Mass Spectrometry of Genetically Encoded Targets , 2015, Angewandte Chemie.

[87]  C. Bertozzi,et al.  Imaging the Sialome during Zebrafish Development with Copper-Free Click Chemistry , 2012, Chembiochem : a European journal of chemical biology.

[88]  Michael J Higley,et al.  Calcium Signaling in Dendritic Spines , 2022 .

[89]  G. Edelman,et al.  BDNF induces widespread changes in synaptic protein content and up-regulates components of the translation machinery: an analysis using high-throughput proteomics. , 2007, Journal of proteome research.

[90]  Richard D Emes,et al.  Evolutionary expansion and anatomical specialization of synapse proteome complexity , 2008, Nature Neuroscience.

[91]  A. Smit,et al.  Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. , 2005, Journal of proteome research.

[92]  S. Okabe,et al.  Structural dynamics of dendritic spines: molecular composition, geometry and functional regulation. , 2014, Biochimica et biophysica acta.

[93]  S. Bonn,et al.  De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus , 2014, Front. Cell. Neurosci..

[94]  Melitta Schachner,et al.  Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain , 2010, Trends in Neurosciences.

[95]  Anastassios V. Tzingounis,et al.  Molecular constituents of neuronal AMPA receptors , 2005, The Journal of cell biology.

[96]  Silvio O Rizzoli,et al.  Correlated optical and isotopic nanoscopy , 2014, Nature Communications.

[97]  C. Davies,et al.  Global changes in the hippocampal proteome following exposure to an enriched environment , 2007, Neuroscience.

[98]  G. Hart,et al.  Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. , 2007, Nature.

[99]  S. Markey,et al.  Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. , 2015, Journal of proteome research.

[100]  Michael J. Sweredoski,et al.  Cell-specific proteomic analysis in Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[101]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[102]  P. ’. ‘t Hoen,et al.  Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. , 2015, Trends in genetics : TIG.

[103]  A. Smit,et al.  The Synaptic Proteome during Development and Plasticity of the Mouse Visual Cortex* , 2011, Molecular & Cellular Proteomics.

[104]  F. Ebner,et al.  In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation , 2013, Proceedings of the National Academy of Sciences.

[105]  R. Yasuda,et al.  Plasticity of dendritic spines: subcompartmentalization of signaling. , 2014, Annual review of physiology.

[106]  Mriganka Sur,et al.  Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation , 2014, Neuron.

[107]  B. Chait,et al.  Proteomic Studies of a Single CNS Synapse Type: The Parallel Fiber/Purkinje Cell Synapse , 2009, PLoS biology.

[108]  John R. Yates,et al.  Neural Palmitoyl-Proteomics Reveals Dynamic Synaptic Palmitoylation , 2008, Nature.

[109]  Gert Lubec,et al.  Hippocampal protein levels related to spatial memory are different in the Barnes maze and in the multiple T-maze. , 2009, Journal of proteome research.

[110]  J. Schreiber,et al.  Genome-Wide Profiling of the Activity-Dependent Hippocampal Transcriptome , 2013, PloS one.

[111]  C. Hoogenraad,et al.  Actin in dendritic spines: connecting dynamics to function , 2010, The Journal of cell biology.

[112]  Yoshiya Oda,et al.  Identification of activity‐regulated proteins in the postsynaptic density fraction , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[113]  E. Gundelfinger,et al.  Contributions of astrocytes to synapse formation and maturation — Potential functions of the perisynaptic extracellular matrix , 2010, Brain Research Reviews.

[114]  Hannah Monyer,et al.  CKAMP44: A Brain-Specific Protein Attenuating Short-Term Synaptic Plasticity in the Dentate Gyrus , 2010, Science.

[115]  C. Dotti,et al.  Lipid dynamics at dendritic spines , 2014, Front. Neuroanat..

[116]  R. Morris,et al.  Making memories last: the synaptic tagging and capture hypothesis , 2010, Nature Reviews Neuroscience.

[117]  Heikki Rauvala,et al.  [The dynamic synapse]. , 2003, Duodecim; laaketieteellinen aikakauskirja.

[118]  S. Tenzer,et al.  In‐depth protein profiling of the postsynaptic density from mouse hippocampus using data‐independent acquisition proteomics , 2014, Proteomics.

[119]  S. Rose,et al.  Glycoproteins and memory formation , 1995, Behavioural Brain Research.

[120]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[121]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[122]  H. Urlaub,et al.  Molecular Profiling of Synaptic Vesicle Docking Sites Reveals Novel Proteins but Few Differences between Glutamatergic and GABAergic Synapses , 2013, Neuron.

[123]  S. Ficarro,et al.  Identification of the Plasticity-Relevant Fucose-α(1−2)-Galactose Proteome from the Mouse Olfactory Bulb , 2009, Biochemistry.

[124]  N. Ziv,et al.  Exchange and Redistribution Dynamics of the Cytoskeleton of the Active Zone Molecule Bassoon , 2009, The Journal of Neuroscience.

[125]  Iain D G Campuzano,et al.  Proteomic Analysis of in Vivo Phosphorylated Synaptic Proteins* , 2005, Journal of Biological Chemistry.

[126]  B. Qualmann,et al.  Proteomic Analysis of Glycine Receptor β Subunit (GlyRβ)-interacting Proteins , 2014, The Journal of Biological Chemistry.

[127]  B. Bogerts,et al.  A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia , 2008, Molecular Psychiatry.

[128]  M. Krug,et al.  Enhancement of Hippocampal Long-Term Potentiation in Vitro by Fucosyl-Carbohydrates , 1997 .

[129]  R. Meredith,et al.  Proteomics, Ultrastructure, and Physiology of Hippocampal Synapses in a Fragile X Syndrome Mouse Model Reveal Presynaptic Phenotype* , 2011, The Journal of Biological Chemistry.

[130]  T. Ziv,et al.  Cell-selective labelling of proteomes in Drosophila melanogaster , 2015, Nature Communications.

[131]  A. Smit,et al.  Interaction proteomics reveals brain region-specific AMPA receptor complexes. , 2014, Journal of proteome research.

[132]  Y. Kanai,et al.  Linkage of N-cadherin to multiple cytoskeletal elements revealed by a proteomic approach in hippocampal neurons , 2012, Neurochemistry International.

[133]  R. Neve,et al.  Dynamic O-GlcNAc Modification Regulates CREB-Mediated Gene Expression and Memory Formation , 2011, Nature chemical biology.

[134]  Daniela C Dieterich,et al.  Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[135]  T. Knöpfel,et al.  Involvement of Protein Synthesis and Degradation in Long-Term Potentiation of Schaffer Collateral CA1 Synapses , 2006, The Journal of Neuroscience.

[136]  M. Miano,et al.  A novel mutation in the PHF8 gene is associated with X‐linked mental retardation with cleft lip/cleft palate , 2007, Clinical genetics.

[137]  Erin M. Schuman,et al.  Proteostasis in complex dendrites , 2013, Nature Reviews Neuroscience.

[138]  A. Burlingame,et al.  Phosphorylation state of postsynaptic density proteins , 2005, Journal of neurochemistry.

[139]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[140]  H. Urlaub,et al.  Quantitative Comparison of Glutamatergic and GABAergic Synaptic Vesicles Unveils Selectivity for Few Proteins Including MAL2, a Novel Synaptic Vesicle Protein , 2010, The Journal of Neuroscience.

[141]  W. Yao,et al.  Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses , 2011, Journal of neurochemistry.

[142]  E. Ziff Enlightening the Postsynaptic Density , 1997, Neuron.

[143]  Benjamin F. Mueller,et al.  The proteome of the presynaptic active zone from mouse brain , 2014, Molecular and Cellular Neuroscience.

[144]  Uwe Schulte,et al.  High-Resolution Proteomics Unravel Architecture and Molecular Diversity of Native AMPA Receptor Complexes , 2012, Neuron.

[145]  K M Harris,et al.  Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines , 2000, Hippocampus.

[146]  A. V. D. van den Ouweland,et al.  Genetic analysis of von Hippel‐Lindau disease , 2010, Human mutation.

[147]  M. Ehlers Dendritic trafficking for neuronal growth and plasticity. , 2013, Biochemical Society transactions.

[148]  E. Gundelfinger,et al.  Molecular organization and plasticity of the cytomatrix at the active zone , 2012, Current Opinion in Neurobiology.

[149]  M. Krug,et al.  The amnesic substance 2-deoxy-d-galactose suppresses the maintenance of hippocampal LTP , 1991, Brain Research.

[150]  F. Ohl,et al.  Synaptic proteome changes in mouse brain regions upon auditory discrimination learning , 2012, Proteomics.

[151]  Gerald W. Hart,et al.  Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins , 2007, Nature.

[152]  M. Kennedy,et al.  Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry , 2000, The Journal of Neuroscience.

[153]  P. Hoen,et al.  Alternative mRNA transcription, processing, and translation: insights from RNA sequencing , 2015 .

[154]  C. Hoogenraad,et al.  The postsynaptic architecture of excitatory synapses: a more quantitative view. , 2007, Annual review of biochemistry.

[155]  A. Levey,et al.  Proteomic analysis of postsynaptic density in Alzheimer's disease. , 2013, Clinica chimica acta; international journal of clinical chemistry.

[156]  S. Guan,et al.  Analysis of proteome dynamics in the mouse brain , 2010, Proceedings of the National Academy of Sciences.

[157]  Takashi Yamauchi,et al.  Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography‐tandem mass spectrometry , 2003, Journal of neurochemistry.

[158]  Eckart D Gundelfinger,et al.  Proteomics Analysis of Rat Brain Postsynaptic Density , 2004, Journal of Biological Chemistry.

[159]  M. Fälth,et al.  l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry , 2011, Molecular & Cellular Proteomics.

[160]  F. Angenstein,et al.  The maintenance of hippocampal long-term potentiation is paralleled by a dopamine-dependent increase in glycoprotein fucosylation , 1992, Neurochemistry International.

[161]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[162]  C. Hoogenraad,et al.  Axon and dendritic trafficking , 2014, Current Opinion in Neurobiology.

[163]  H. Matthies,et al.  Impairment of glycoprotein fucosylation in rat hippocampus and the consequences on memory formation , 1986, Pharmacology Biochemistry and Behavior.

[164]  Philip R. Gafken,et al.  Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents , 2004, Journal of neurochemistry.

[165]  M. Owen,et al.  The synapse in schizophrenia , 2014, The European journal of neuroscience.

[166]  H. Urlaub,et al.  Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting , 2014, The EMBO journal.

[167]  L. Devi,et al.  An Integrated Quantitative Proteomics and Systems Biology Approach to Explore Synaptic Protein Profile Changes During Morphine Exposure , 2014, Neuropsychopharmacology.

[168]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[169]  M. Corena-McLeod,et al.  New Model of Action for Mood Stabilizers: Phosphoproteome from Rat Pre-Frontal Cortex Synaptoneurosomal Preparations , 2013, PloS one.

[170]  N. Ziv,et al.  The roles of protein expression in synaptic plasticity and memory consolidation , 2014, Front. Mol. Neurosci..

[171]  D. Piomelli,et al.  A neuroscientist's guide to lipidomics , 2007, Nature Reviews Neuroscience.

[172]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[173]  S. Grant,et al.  Neuroproteomics: understanding the molecular organization and complexity of the brain , 2009, Nature Reviews Neuroscience.

[174]  F. Tamanoi,et al.  A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[175]  Jennifer A. Prescher,et al.  Copper-free click chemistry in living animals , 2010, Proceedings of the National Academy of Sciences.

[176]  A. Smit,et al.  Time‐dependent changes in the mouse hippocampal synaptic membrane proteome after contextual fear conditioning , 2015, Hippocampus.

[177]  M. Wiener,et al.  Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. , 2004, Analytical chemistry.

[178]  N. Ziv,et al.  Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance , 2013, PloS one.

[179]  Andrea L. Rosso,et al.  Disruption of glutamate receptors at Shank-postsynaptic platform in Alzheimer's disease , 2009, Brain Research.

[180]  Christos G. Gkogkas,et al.  Synthesis of two SAPAP3 isoforms from a single mRNA is mediated via alternative translational initiation , 2012, Scientific Reports.

[181]  Peter R. Baker,et al.  Quantitative Analysis of Synaptic Phosphorylation and Protein Expression*S , 2008, Molecular & Cellular Proteomics.

[182]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[183]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[184]  M. Ehlers,et al.  Secretory Outposts for the Local Processing of Membrane Cargo in Neuronal Dendrites , 2008, Traffic.

[185]  Carlo Sala,et al.  Dendritic spines: the locus of structural and functional plasticity. , 2014, Physiological reviews.

[186]  E. Schuman,et al.  Mutant methionyl-tRNA synthetase from bacteria enables site-selective N-terminal labeling of proteins expressed in mammalian cells , 2013, Proceedings of the National Academy of Sciences.

[187]  Pierre Baldi,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[188]  M. Takano,et al.  Proteomic analysis of time-dependent changes in proteins expressed in mouse hippocampus during synaptic plasticity induced by GABAA receptor blockade , 2013, Neuroscience Letters.

[189]  Steven P Gygi,et al.  Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[190]  S. Grant,et al.  Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins , 2009, Molecular systems biology.

[191]  R. Wong,et al.  A Combined Transgenic Proteomic Analysis and Regulated Trafficking of Neuroligin-2* , 2014, The Journal of Biological Chemistry.

[192]  M. Dierssen,et al.  A gel-based proteomic method reveals several protein pathway abnormalities in fetal Down syndrome brain. , 2011, Journal of proteomics.

[193]  K. J. Murphy,et al.  Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus , 2011, Proteomics.

[194]  E. Dent,et al.  The dynamic cytoskeleton: backbone of dendritic spine plasticity , 2011, Current Opinion in Neurobiology.

[195]  Thorsten Lang,et al.  Multi-protein assemblies underlie the mesoscale organization of the plasma membrane , 2014, Nature Communications.

[196]  J. Weissenbach,et al.  Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia , 1996, Nature.

[197]  Bobae An,et al.  Quantitative proteomics of auditory fear conditioning. , 2013, Biochemical and biophysical research communications.

[198]  J. Yates,et al.  Proteomic identification of palmitoylated proteins. , 2006, Methods.