A dielectric-defined lateral heterojunction in a monolayer semiconductor

[1]  Jonghwan Kim,et al.  Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures , 2018, Science.

[2]  X. Duan,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[3]  P. Kim,et al.  Band structure engineering of 2D materials using patterned dielectric superlattices , 2017, Nature Nanotechnology.

[4]  Timothy C. Berkelbach,et al.  Environmentally-Sensitive Theory of Electronic and Optical Transitions in Atomically-Thin Semiconductors , 2017, 1709.01094.

[5]  P. Kim,et al.  Low-Temperature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes. , 2017, Nano letters.

[6]  Timothy C. Berkelbach,et al.  Coulomb engineering of the bandgap and excitons in two-dimensional materials , 2017, Nature Communications.

[7]  H. D. J. Felipe,et al.  Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality , 2017 .

[8]  Zuocheng Zhang,et al.  Direct observation of the layer-dependent electronic structure in phosphorene. , 2016, Nature nanotechnology.

[9]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[10]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[11]  Xiaodong Xu,et al.  Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields. , 2016, Nano letters.

[12]  Kyeongjae Cho,et al.  Monolayer MoS2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors , 2016, Scientific Reports.

[13]  S. Louie,et al.  Screening and many-body effects in two-dimensional crystals: Monolayer MoS 2 , 2016, 1605.08733.

[14]  Zijing Ding,et al.  Engineering Bandgaps of Monolayer MoS2 and WS2 on Fluoropolymer Substrates by Electrostatically Tuned Many‐Body Effects , 2016, Advanced materials.

[15]  Jonghwan Kim,et al.  Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films. , 2016, Nano letters.

[16]  K. Thygesen,et al.  Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials. , 2015, Physical review letters.

[17]  K. Thygesen,et al.  Excitons in van der Waals heterostructures: The important role of dielectric screening , 2015, 1509.07972.

[18]  S. Agnello,et al.  Nanoscale inhomogeneity of the Schottky barrier and resistivity in MoS 2 multilayers , 2015 .

[19]  A. Javey,et al.  MoS2 Heterojunctions by Thickness Modulation , 2015, Scientific Reports.

[20]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[21]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[22]  Timothy C. Berkelbach,et al.  Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. , 2015, Nano letters.

[23]  S. Louie,et al.  Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures , 2015, Nano letters.

[24]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[25]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[26]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[27]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[28]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[29]  S. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[30]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[31]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[32]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[33]  Chendong Zhang,et al.  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[34]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[35]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[36]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[37]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[38]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[39]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[40]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[41]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[42]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[43]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[44]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[45]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[46]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[47]  G. Maier Low dielectric constant polymers for microelectronics , 2001 .

[48]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[49]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[50]  C. H. Perry,et al.  Normal Modes in Hexagonal Boron Nitride , 1966 .

[51]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.