Local co-delivery and release of antimicrobial peptide and RGD using porous TiO2
暂无分享,去创建一个
Yingjun Wang | Junjian Chen | Lin Wang | L. Ren | Lin Shi
[1] V. Sautou,et al. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. , 2013, International journal of pharmaceutics.
[2] M. Fernández-García,et al. UV and visible light optimization of anatase TiO2 antimicrobial properties: Surface deposition of metal and oxide (Cu, Zn, Ag) species , 2013 .
[3] Hua Dong,et al. Micropatterned TiO2 nanotubes: fabrication, characterization and in vitro protein/cell responses. , 2013, Journal of materials chemistry. B.
[4] D. Shang,et al. Rapid Cytotoxicity of Antimicrobial Peptide Tempoprin-1CEa in Breast Cancer Cells through Membrane Destruction and Intracellular Calcium Mechanism , 2013, PloS one.
[5] J. Weng,et al. Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo. , 2012, Journal of biomedical materials research. Part A.
[6] H. Won,et al. Antimicrobial Peptides for Therapeutic Applications: A Review , 2012, Molecules.
[7] Menghan Ma,et al. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. , 2012, Journal of biomedical materials research. Part A.
[8] Hongyi Li,et al. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. , 2011, Biomaterials.
[9] G. Cheng,et al. Stability, antimicrobial activity, and cytotoxicity of poly(amidoamine) dendrimers on titanium substrates. , 2011, ACS applied materials & interfaces.
[10] Analette I. Lopez,et al. "Click" immobilization on alkylated silicon substrates: model for the study of surface bound antimicrobial peptides. , 2011, Chemistry.
[11] A. Hirsch,et al. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release , 2009 .
[12] K. Kim,et al. TiO2 nanotubes from stirred glycerol/NH4F electrolyte: Roughness, wetting behavior and adhesion for implant applications , 2009 .
[13] Ayusman Sen,et al. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. , 2006, Journal of the American Chemical Society.
[14] R. Darouiche. Treatment of infections associated with surgical implants. , 2004, The New England journal of medicine.
[15] Horst Kessler,et al. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. , 2003, Biomaterials.
[16] M. Zasloff. Antimicrobial peptides of multicellular organisms , 2002, Nature.
[17] E Ruoslahti,et al. New perspectives in cell adhesion: RGD and integrins. , 1987, Science.
[18] P. Schmuki,et al. Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynami , 2013 .
[19] S. Pham,et al. Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model. , 2009, Acta biomaterialia.
[20] S. R. Giddens,et al. Investigations into the in vitro antimicrobial activity and mode of action of the phenazine antibiotic D-alanylgriseoluteic acid. , 2007, International journal of antimicrobial agents.