Local co-delivery and release of antimicrobial peptide and RGD using porous TiO2

We demonstrated for the first time the use of two kinds of porous TiO2 films to co-deliver peptide HHC36 (KRWWKWWRR) and RGD. The film co-delivering these two peptides exhibited excellent antimicrobial activity against S. aureus and E. coli and low cytotoxicity to rat bone mesenchymal stem cells (rBMSCs).

[1]  V. Sautou,et al.  In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. , 2013, International journal of pharmaceutics.

[2]  M. Fernández-García,et al.  UV and visible light optimization of anatase TiO2 antimicrobial properties: Surface deposition of metal and oxide (Cu, Zn, Ag) species , 2013 .

[3]  Hua Dong,et al.  Micropatterned TiO2 nanotubes: fabrication, characterization and in vitro protein/cell responses. , 2013, Journal of materials chemistry. B.

[4]  D. Shang,et al.  Rapid Cytotoxicity of Antimicrobial Peptide Tempoprin-1CEa in Breast Cancer Cells through Membrane Destruction and Intracellular Calcium Mechanism , 2013, PloS one.

[5]  J. Weng,et al.  Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo. , 2012, Journal of biomedical materials research. Part A.

[6]  H. Won,et al.  Antimicrobial Peptides for Therapeutic Applications: A Review , 2012, Molecules.

[7]  Menghan Ma,et al.  Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. , 2012, Journal of biomedical materials research. Part A.

[8]  Hongyi Li,et al.  Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. , 2011, Biomaterials.

[9]  G. Cheng,et al.  Stability, antimicrobial activity, and cytotoxicity of poly(amidoamine) dendrimers on titanium substrates. , 2011, ACS applied materials & interfaces.

[10]  Analette I. Lopez,et al.  "Click" immobilization on alkylated silicon substrates: model for the study of surface bound antimicrobial peptides. , 2011, Chemistry.

[11]  A. Hirsch,et al.  X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release , 2009 .

[12]  K. Kim,et al.  TiO2 nanotubes from stirred glycerol/NH4F electrolyte: Roughness, wetting behavior and adhesion for implant applications , 2009 .

[13]  Ayusman Sen,et al.  Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. , 2006, Journal of the American Chemical Society.

[14]  R. Darouiche Treatment of infections associated with surgical implants. , 2004, The New England journal of medicine.

[15]  Horst Kessler,et al.  RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. , 2003, Biomaterials.

[16]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[17]  E Ruoslahti,et al.  New perspectives in cell adhesion: RGD and integrins. , 1987, Science.

[18]  P. Schmuki,et al.  Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynami , 2013 .

[19]  S. Pham,et al.  Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model. , 2009, Acta biomaterialia.

[20]  S. R. Giddens,et al.  Investigations into the in vitro antimicrobial activity and mode of action of the phenazine antibiotic D-alanylgriseoluteic acid. , 2007, International journal of antimicrobial agents.