Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells

New electron withdrawing monomers, thieno[2′,3′:5′,6′]pyrido[3,4-g]thieno[3,2-c]isoquinoline-5,11(4H,10H)-dione (TPTI) and fluorenedicyclopentathiophene dimalononitrile (CN), have been developed and used to form 12 alternating polymers having different monomer combinations: (a) weak donating monomer–strong accepting monomer, (b) weak accepting monomer–strong accepting monomer, (c) weak accepting monomer–weak accepting monomer, and (d) strong donating monomer–strong accepting monomer. It was found that lowest unoccupied molecular orbital (LUMO) energy levels of polymers are significantly determined by stronger electron accepting monomers and highest occupied molecular orbital (HOMO) energy levels by the weak electron accepting monomers. In addition, fluorescent quantum yields of the TPTI-based polymers in chloroform solution are significantly decreased as the LUMO energy levels of the TPTI series of polymers become deeper. The quantum yield was found to be closely related with the photovoltaic properties, ...

[1]  A. Facchetti,et al.  Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells , 2012, Advanced materials.

[2]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[3]  Antonio Facchetti,et al.  Polymer donor–polymer acceptor (all-polymer) solar cells , 2013 .

[4]  Jizheng Wang,et al.  Fill factor in organic solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[5]  J. Haskins,et al.  Synthesis and structure-activity relationship of substituted tetrahydro- and hexahydro-1,2-benzisothiazol-3-one 1,1-dioxides and thiadiazinones: potential anxiolytic agents. , 1989, Journal of medicinal chemistry.

[6]  Jin-Hu Dou,et al.  Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm² V(-1) s(-1) under ambient conditions. , 2013, Journal of the American Chemical Society.

[7]  S. Jenekhe,et al.  High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. , 2013, Journal of the American Chemical Society.

[8]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[9]  Julian Tirado-Rives,et al.  Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. , 2008, Journal of chemical theory and computation.

[10]  C. B. Nielsen,et al.  Recent Advances in the Development of Semiconducting DPP‐Containing Polymers for Transistor Applications , 2013, Advanced materials.

[11]  Kazuhito Hashimoto,et al.  Control of Miscibility and Aggregation Via the Material Design and Coating Process for High‐Performance Polymer Blend Solar Cells , 2013, Advanced materials.

[12]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[13]  S. Jenekhe,et al.  Efficient Solar Cells from Layered Nanostructures of Donor and Acceptor Conjugated Polymers , 2004 .

[14]  Xugang Guo,et al.  Conjugated polymers from naphthalene bisimide. , 2008, Organic letters.

[15]  D. Bradley,et al.  Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole) , 2004 .

[16]  T. Lei,et al.  "Conformation locked" strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: synthesis, properties, and effects of fluorine substitution position. , 2014, Journal of the American Chemical Society.

[17]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[18]  L. Shimon,et al.  Selective bromination of perylene diimides under mild conditions. , 2007, The Journal of organic chemistry.

[19]  Martin A. Green,et al.  Accuracy of analytical expressions for solar cell fill factors , 1982 .

[20]  A. Heeger,et al.  High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. , 2011, Journal of the American Chemical Society.

[21]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[22]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[23]  J. Brédas,et al.  Optical and redox properties of a series of 3,4-ethylenedioxythiophene oligomers. , 2002, Chemistry.

[24]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[25]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[26]  Robert P. H. Chang,et al.  Morphology‐Performance Relationships in High‐Efficiency All‐Polymer Solar Cells , 2014 .

[27]  R. E. Kellogg,et al.  Radiationless Intermolecular Energy Transfer. III. Determination of Phosphorescence Efficiencies , 1964 .

[28]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[29]  Rainer F. Mahrt,et al.  Efficient two layer leds on a polymer blend basis , 1995 .

[30]  Mark A Ratner,et al.  Rylene and Related Diimides for Organic Electronics , 2011, Advanced materials.

[31]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[32]  Jianhua Chen,et al.  A pentacyclic aromatic lactam building block for efficient polymer solar cells , 2013 .

[33]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[34]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[35]  Ian A. Howard,et al.  Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells , 2010 .

[36]  Jean-Luc Brédas,et al.  Organic polymers based on aromatic rings (polyparaphenylene, polypyrrole, polythiophene): Evolution of the electronic properties as a function of the torsion angle between adjacent rings , 1985 .

[37]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[38]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[39]  K. Pilgram,et al.  Bromination of 2,1,3‐benzothiadiazoles , 1970 .

[40]  R. Ruoff,et al.  Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes , 1995 .

[41]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[42]  Daniel Moses,et al.  Ultrafast photoinduced electron transfer in conducting polymer—buckminsterfullerene composites , 1993 .

[43]  Yue Cao,et al.  Dithiazolyl-benzothiadiazole-containing polymer acceptors: synthesis, characterization, and all-polymer solar cells , 2013 .

[44]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[45]  Jin-Hu Dou,et al.  A BDOPV‐Based Donor–Acceptor Polymer for High‐Performance n‐Type and Oxygen‐Doped Ambipolar Field‐Effect Transistors , 2013, Advanced materials.

[46]  P. Piotrowiak Photoinduced electron transfer in molecular systems: Recent developments , 1999 .

[47]  Daisuke Mori,et al.  Low‐Bandgap Donor/Acceptor Polymer Blend Solar Cells with Efficiency Exceeding 4% , 2014 .

[48]  G. Bazan,et al.  Structural dependence of the optical properties of narrow bandgap semiconductors with orthogonal donor–acceptor geometries , 2013 .

[49]  Sonya A. Mollinger,et al.  Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. , 2013, Journal of the American Chemical Society.

[50]  James M. Tour,et al.  Alternating Donor/Acceptor Repeat Units in Polythiophenes. Intramolecular Charge Transfer for Reducing Band Gaps in Fully Substituted Conjugated Polymers , 1998 .

[51]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[52]  Samson A Jenekhe,et al.  All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. , 2013, Journal of the American Chemical Society.

[53]  Bernard Kippelen,et al.  A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. , 2007, Journal of the American Chemical Society.

[54]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[55]  Chain-Shu Hsu,et al.  Donor-acceptor polymers based on multi-fused heptacyclic structures: synthesis, characterization and photovoltaic applications. , 2010, Chemical communications.

[56]  Long Ye,et al.  Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45% , 2014 .

[57]  A. Facchetti,et al.  Bulk Electron Transport and Charge Injection in a High Mobility n‐Type Semiconducting Polymer , 2010, Advanced materials.