Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment

Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics.

[1]  Roberto Tagliaferri,et al.  Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data , 2018, Bioinform..

[2]  Supratik Kar,et al.  On a simple approach for determining applicability domain of QSAR models , 2015 .

[3]  Haralambos Sarimveis,et al.  Read-across predictions of nanoparticle hazard endpoints: a mathematical optimization approach , 2019, Nanoscale advances.

[4]  Francesco Falciani,et al.  GALGO: an R package for multivariate variable selection using genetic algorithms , 2006, Bioinform..

[5]  Mikko Poikkimäki,et al.  Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. , 2020, Small.

[6]  Andrew B. Nobel,et al.  Merging two gene-expression studies via cross-platform normalization , 2008, Bioinform..

[7]  Nicole Kleinstreuer,et al.  Supporting read-across using biological data. , 2016, ALTEX.

[8]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[9]  Roberto Tagliaferri,et al.  INSIdE NANO: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials , 2019, Scientific Reports.

[10]  Vittorio Fortino,et al.  INfORM: Inference of NetwOrk Response Modules , 2018, Bioinform..

[11]  Egon L. Willighagen,et al.  Introducing WikiPathways as a Data-Source to Support Adverse Outcome Pathways for Regulatory Risk Assessment of Chemicals and Nanomaterials , 2018, Front. Genet..

[12]  J. Estellé,et al.  Extensive Expression Differences along Porcine Small Intestine Evidenced by Transcriptome Sequencing , 2014, PloS one.

[13]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[14]  Nicola Torelli,et al.  ROSE: a Package for Binary Imbalanced Learning , 2014, R J..

[15]  Marylyn D. Ritchie,et al.  ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network , 2013, BioData Mining.

[16]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[17]  Jeffrey S Gift,et al.  Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1. , 2011, Toxicology and applied pharmacology.

[18]  Jason Weston,et al.  Gene functional classification from heterogeneous data , 2001, RECOMB.

[19]  Sibum Sung,et al.  RNA-seq assistant: machine learning based methods to identify more transcriptional regulated genes , 2018, BMC Genomics.

[20]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[21]  Rolf Altenburger,et al.  Map and model—moving from observation to prediction in toxicogenomics , 2019, GigaScience.

[22]  Boyu Lyu,et al.  Deep Learning Based Tumor Type Classification Using Gene Expression Data , 2018, bioRxiv.

[23]  Roberto Tagliaferri,et al.  Machine learning for bioinformatics and neuroimaging , 2018, WIREs Data Mining Knowl. Discov..

[24]  Krister Wennerberg,et al.  A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury , 2017, Nature Communications.

[25]  Paul D. McNicholas,et al.  Model-based clustering of microarray expression data via latent Gaussian mixture models , 2010, Bioinform..

[26]  Shikha Gupta,et al.  Nano-QSAR modeling for predicting biological activity of diverse nanomaterials , 2014 .

[27]  Ruth Etzioni,et al.  Combining Results of Microarray Experiments: A Rank Aggregation Approach , 2006 .

[28]  Andreas Tsoumanis,et al.  A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints , 2018, Nanotoxicology.

[29]  Kenji Mizuguchi,et al.  Interactive Toxicogenomics: Gene set discovery, clustering and analysis in Toxygates , 2017, Scientific Reports.

[30]  Paola Gramatica,et al.  Principles of QSAR models validation: internal and external , 2007 .

[31]  Andreas Bender,et al.  Developments in toxicogenomics: understanding and predicting compound-induced toxicity from gene expression data , 2018, Molecular omics.

[32]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[33]  Davide Chicco,et al.  Ten quick tips for machine learning in computational biology , 2017, BioData Mining.

[34]  Javad Zahiri,et al.  Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data , 2017, Plant Biotechnology Reports.

[35]  Yan Zhao,et al.  Drug repositioning: a machine-learning approach through data integration , 2013, Journal of Cheminformatics.

[36]  Rainer Breitling,et al.  RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis , 2006, Bioinform..

[37]  Roberto Tagliaferri,et al.  Decision Trees and Random Forests , 2019, Encyclopedia of Bioinformatics and Computational Biology.

[38]  Pierre R. Bushel,et al.  Editorial: Integrative Toxicogenomics: Analytical Strategies to Amalgamate Exposure Effects With Genomic Sciences , 2018, Front. Genet..

[39]  Korbinian Strimmer,et al.  From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data , 2007, BMC Systems Biology.

[40]  A. Zell,et al.  A Toxicogenomic Approach for the Prediction of Murine Hepatocarcinogenesis Using Ensemble Feature Selection , 2013, PloS one.

[41]  Ziv Shkedy,et al.  IsoGene: An R Package for Analyzing Dose-response Studies in Microarray Experiments , 2010, R J..

[42]  R. Snyder,et al.  Toxicogenomics in drug discovery and development: mechanistic analysis of compound/class-dependent effects using the DrugMatrix database. , 2006, Pharmacogenomics.

[43]  Pekka Kohonen,et al.  Toxic and Genomic Influences of Inhaled Nanomaterials as a Basis for Predicting Adverse Outcome. , 2018, Annals of the American Thoracic Society.

[44]  George Michailidis,et al.  A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data , 2015, Bioinform..

[45]  Alexander Golbraikh,et al.  Integrative chemical-biological read-across approach for chemical hazard classification. , 2013, Chemical research in toxicology.

[46]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[47]  Olatz Arbelaitz,et al.  An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..

[48]  Harvey J Clewell,et al.  A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[49]  Giancarlo Raiconi,et al.  MVDA: a multi-view genomic data integration methodology , 2015, BMC Bioinformatics.

[50]  Fei Liu,et al.  Inference of Gene Regulatory Network Based on Local Bayesian Networks , 2016, PLoS Comput. Biol..

[51]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[52]  Imran Shah,et al.  Navigating through the minefield of read-across tools: A review of in silico tools for grouping , 2017 .

[53]  Zhen Zhang,et al.  OmicsMapNet: Transforming omics data to take advantage of Deep Convolutional Neural Network for discovery , 2018, ArXiv.

[54]  David M. W. Powers,et al.  Characterization and evaluation of similarity measures for pairs of clusterings , 2009, Knowledge and Information Systems.

[55]  Daniel Urda,et al.  Deep Learning to Analyze RNA-Seq Gene Expression Data , 2017, IWANN.

[56]  Georgia Tsiliki,et al.  A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions , 2017, Toxicological sciences : an official journal of the Society of Toxicology.

[57]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[58]  Melanie Hilario,et al.  Stability of feature selection algorithms , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[59]  A. Tropsha,et al.  Beware of q 2 , 2002 .

[60]  Othman Soufan,et al.  T1000: a reduced gene set prioritized for toxicogenomic studies , 2019, PeerJ.

[61]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[62]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[63]  Guanyu Wang,et al.  Machine Learning Based Toxicity Prediction: From Chemical Structural Description to Transcriptome Analysis , 2018, International journal of molecular sciences.

[64]  Russell S. Thomas,et al.  BMDExpress Data Viewer ‐ a visualization tool to analyze BMDExpress datasets , 2015, Journal of applied toxicology : JAT.

[65]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[66]  C. Nyachoti,et al.  Zearalenone Exposure Enhanced the Expression of Tumorigenesis Genes in Donkey Granulosa Cells via the PTEN/PI3K/AKT Signaling Pathway , 2018, Front. Genet..

[67]  Alfonso Lampen,et al.  Hazard characterization of 3‐MCPD using benchmark dose modeling: Factors influencing the outcome , 2012 .

[68]  Yoshinobu Kawahara,et al.  Toxicity prediction from toxicogenomic data based on class association rule mining , 2014, Toxicology reports.

[69]  Melanie Hilario,et al.  Knowledge and Information Systems , 2007 .

[70]  Md. Nurul Haque Mollah,et al.  Assessment of Drugs Toxicity and Associated Biomarker Genes Using Hierarchical Clustering , 2019, Medicina.

[71]  Lee Bennett,et al.  Prediction of compound signature using high density gene expression profiling. , 2002, Toxicological sciences : an official journal of the Society of Toxicology.

[72]  Irini Furxhi,et al.  Predicting Nanomaterials toxicity pathways based on genome-wide transcriptomics studies using Bayesian networks , 2018, 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO).

[73]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[74]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[75]  Haiyan Huang,et al.  Review on statistical methods for gene network reconstruction using expression data. , 2014, Journal of theoretical biology.

[76]  Vittorio Fortino,et al.  MaNGA: a novel multi-niche multi-objective genetic algorithm for QSAR modelling , 2019, Bioinform..

[77]  Robert A. Jolly,et al.  Predictive Power Estimation Algorithm (PPEA) - A New Algorithm to Reduce Overfitting for Genomic Biomarker Discovery , 2011, PloS one.

[78]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[79]  Tero Aittokallio,et al.  Matrix and Tensor Factorization Methods for Toxicogenomic Modeling and Prediction , 2019, Challenges and Advances in Computational Chemistry and Physics.

[80]  Xinyi Liu,et al.  Predicting drug-induced hepatotoxicity based on biological feature maps and diverse classification strategies , 2019, Briefings Bioinform..

[81]  S. Auerbach,et al.  Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning. , 2010, Toxicology and applied pharmacology.

[82]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[83]  R. Tagliaferri,et al.  Discovery of drug mode of action and drug repositioning from transcriptional responses , 2010, Proceedings of the National Academy of Sciences.

[84]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[85]  Stephen H. Friend,et al.  Toxicogenomics and drug discovery: will new technologies help us produce better drugs? , 2002, Nature Reviews Drug Discovery.

[86]  A. Zell,et al.  Evaluation of Toxicogenomics Approaches for Assessing the Risk of Nongenotoxic Carcinogenicity in Rat Liver , 2014, PLoS ONE.

[87]  Petri Auvinen,et al.  Network Analysis Reveals Similar Transcriptomic Responses to Intrinsic Properties of Carbon Nanomaterials in Vitro and in Vivo. , 2017, ACS nano.

[88]  Weida Tong,et al.  Toxicogenomics: A 2020 Vision. , 2019, Trends in pharmacological sciences.

[89]  Scott C. Wesselkamper,et al.  Editor's Highlight: Application of Gene Set Enrichment Analysis for Identification of Chemically Induced, Biologically Relevant Transcriptomic Networks and Potential Utilization in Human Health Risk Assessment , 2017, Toxicological sciences : an official journal of the Society of Toxicology.

[90]  Yi Li,et al.  Gene expression inference with deep learning , 2015, bioRxiv.

[91]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[92]  Hao Helen Zhang,et al.  Weighted Distance Weighted Discrimination and Its Asymptotic Properties , 2010, Journal of the American Statistical Association.

[93]  Terence P. Speed,et al.  Systematic noise degrades gene co-expression signals but can be corrected , 2015, BMC Bioinformatics.

[94]  A. Tropsha,et al.  Quantitative nanostructure-activity relationship modeling. , 2010, ACS nano.

[95]  April Z Gu,et al.  Analyzing high dimensional toxicogenomic data using consensus clustering. , 2012, Environmental science & technology.

[96]  Ziv Bar-Joseph,et al.  GCNG: Graph convolutional networks for inferring cell-cell interactions , 2019, bioRxiv.

[97]  Kim-Anh Lê Cao,et al.  DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays , 2019, Bioinform..

[98]  Zhuowen Tu,et al.  Similarity network fusion for aggregating data types on a genomic scale , 2014, Nature Methods.

[99]  Khalid Raza,et al.  Machine Learning-based state-of-the-art methods for the classification of RNA-Seq data , 2017, bioRxiv.

[100]  Kevin R. Coombes,et al.  Analysis of dose-response effects on gene expression data with comparison of two microarray platforms , 2005, Bioinform..

[101]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[102]  Vittorio Fortino,et al.  Integration of genome-wide mRNA and miRNA expression, and DNA methylation data of three cell lines exposed to ten carbon nanomaterials , 2018, Data in brief.

[103]  A. Siraki,et al.  Current status and future prospects of toxicogenomics in drug discovery. , 2014, Drug discovery today.

[104]  Jing Chen,et al.  Disease candidate gene identification and prioritization using protein interaction networks , 2009, BMC Bioinformatics.

[105]  Pietro Coretto,et al.  An integrated quantitative structure and mechanism of action-activity relationship model of human serum albumin binding , 2019, Journal of Cheminformatics.

[106]  Constantin F. Aliferis,et al.  Algorithms for Large Scale Markov Blanket Discovery , 2003, FLAIRS.

[107]  Michael C. Schatz,et al.  Addressing confounding artifacts in reconstruction of gene co-expression networks , 2017 .

[108]  K. Goldstein,et al.  Toxicogenomic module associations with pathogenesis: a network-based approach to understanding drug toxicity , 2017, The Pharmacogenomics Journal.

[109]  Roberto Tagliaferri,et al.  Data integration in genomics and systems biology , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[110]  Wout Slob,et al.  Joint project on Benchmark Dose modelling with RIVM , 2018, EFSA Supporting Publications.

[111]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[112]  Michael D. Waters,et al.  Toxicogenomics and systems toxicology: aims and prospects , 2004, Nature Reviews Genetics.

[113]  Jorge Cadima,et al.  Principal component analysis: a review and recent developments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[114]  Ruifeng Liu,et al.  Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity , 2018, Toxicological sciences : an official journal of the Society of Toxicology.

[115]  Witold Pedrycz,et al.  Unsupervised Learning: Clustering , 2007 .

[116]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[117]  Witold R. Rudnicki,et al.  Feature Selection with the Boruta Package , 2010 .

[118]  Vittorio Fortino,et al.  A Robust and Accurate Method for Feature Selection and Prioritization from Multi-Class OMICs Data , 2014, PloS one.

[119]  Terry R Van Vleet,et al.  An Overview of Machine Learning and Big Data for Drug Toxicity Evaluation. , 2020, Chemical research in toxicology.

[120]  Dan Lin,et al.  IsoGeneGUI: Multiple Approaches for Dose-Response Analysis of Microarray Data Using R , 2017, R J..

[121]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[122]  Gyan Bhanot,et al.  Abstract 1996: Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns , 2010 .

[123]  György Kovács,et al.  An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets , 2019, Appl. Soft Comput..

[124]  Russell S. Thomas,et al.  Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment , 2016, Archives of Toxicology.

[125]  Xiaofeng Liu,et al.  Developing a Multi-Dose Computational Model for Drug-Induced Hepatotoxicity Prediction Based on Toxicogenomics Data , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[126]  Jos'e R. Berrendero,et al.  The mRMR variable selection method: a comparative study for functional data , 2015, 1507.03496.

[127]  Tom Michoel,et al.  Learning Differential Module Networks Across Multiple Experimental Conditions. , 2017, Methods in molecular biology.

[128]  Haralambos Sarimveis,et al.  MouseTox: An online toxicity assessment tool for small molecules through Enalos Cloud platform. , 2017, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[129]  C. Huttenhower,et al.  Passing Messages between Biological Networks to Refine Predicted Interactions , 2013, PloS one.

[130]  Roberto Tagliaferri,et al.  Data Mining: Accuracy and Error Measures for Classification and Prediction , 2019, Encyclopedia of Bioinformatics and Computational Biology.

[131]  Vittorio Fortino,et al.  Integration of genome-wide mRNA and miRNA expression, and DNA methylation data of three cell lines exposed to ten carbon nanomaterials , 2018, Data in brief.

[132]  João Pedro de Magalhães,et al.  Gene co-expression analysis for functional classification and gene–disease predictions , 2017, Briefings Bioinform..

[133]  Shyam Visweswaran,et al.  Measuring Stability of Feature Selection in Biomedical Datasets , 2009, AMIA.

[134]  Julieta Noguez-Monroy,et al.  A computational toxicogenomics approach identifies a list of highly hepatotoxic compounds from a large microarray database , 2017, PloS one.

[135]  S. Falcon,et al.  Combining Results of Microarray Experiments: A Rank Aggregation Approach , 2006, Statistical applications in genetics and molecular biology.

[136]  Xiaogang Wang,et al.  A roadmap of clustering algorithms: finding a match for a biomedical application , 2008, Briefings Bioinform..

[137]  Bruce C Allen,et al.  BMDExpress: a software tool for the benchmark dose analyses of genomic data , 2007, BMC Genomics.

[138]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[139]  Robert P. Sheridan,et al.  Similarity to Molecules in the Training Set Is a Good Discriminator for Prediction Accuracy in QSAR , 2004, J. Chem. Inf. Model..

[140]  Georgia Tsiliki,et al.  toxFlow: A Web-Based Application for Read-Across Toxicity Prediction Using Omics and Physicochemical Data , 2017, J. Chem. Inf. Model..

[141]  Jeroen L A Pennings,et al.  A review of toxicogenomic approaches in developmental toxicology. , 2012, Methods in molecular biology.

[142]  Russell S. Thomas,et al.  BMDExpress 2: enhanced transcriptomic dose-response analysis workflow , 2018, Bioinform..

[143]  Tobias Verbeke,et al.  Software for benchmark dose modelling , 2017 .

[144]  Ivan Rusyn,et al.  Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. , 2011, Chemical research in toxicology.

[145]  Andrew Williams,et al.  Ranking of nanomaterial potency to induce pathway perturbations associated with lung responses , 2019, NanoImpact.

[146]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[147]  Ralf Herwig,et al.  Network and Pathway Analysis of Toxicogenomics Data , 2018, Front. Genet..

[148]  Arthur Zimek,et al.  On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study , 2016, Data Mining and Knowledge Discovery.

[149]  E. Gehan,et al.  The properties of high-dimensional data spaces: implications for exploring gene and protein expression data , 2008, Nature Reviews Cancer.

[150]  Angela Serra,et al.  BMDx: a graphical Shiny application to perform Benchmark Dose analysis for transcriptomics data , 2020, Bioinform..

[151]  Nicola Torelli,et al.  Training and assessing classification rules with imbalanced data , 2012, Data Mining and Knowledge Discovery.

[152]  Emilio Benfenati,et al.  A generalizable definition of chemical similarity for read-across , 2014, Journal of Cheminformatics.

[153]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[154]  R G Ulrich,et al.  Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. , 2001, Toxicology and applied pharmacology.

[155]  Sergey Plis,et al.  Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. , 2016, Molecular pharmaceutics.

[156]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[157]  Jing Wang,et al.  Merging microarray data, robust feature selection, and predicting prognosis in prostate cancer , 2006, Cancer informatics.

[158]  Ziv Shkedy,et al.  Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference , 2007, Statistical applications in genetics and molecular biology.

[159]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[160]  Irini Furxhi,et al.  Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index. , 2019, Toxicology letters.

[161]  Ruifeng Liu,et al.  Deep Neural Network Models for Predicting Chemically Induced Liver Toxicity Endpoints From Transcriptomic Responses , 2019, Front. Pharmacol..

[162]  Giancarlo Raiconi,et al.  A multi-view genomic data simulator , 2015, BMC Bioinformatics.

[163]  Jun Chen,et al.  Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes , 2004, BMC Bioinformatics.

[164]  Justin Lamb,et al.  The Connectivity Map: a new tool for biomedical research , 2007, Nature Reviews Cancer.

[165]  Bruce C Allen,et al.  Benchmark dose (BMD) modeling: current practice, issues, and challenges , 2018, Critical reviews in toxicology.

[166]  Chin-Teng Lin,et al.  A review of clustering techniques and developments , 2017, Neurocomputing.

[167]  Ignacio Rojas,et al.  Neural networks: An overview of early research, current frameworks and new challenges , 2016, Neurocomputing.

[168]  Marco Grzegorczyk,et al.  Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data. , 2018, Methods in molecular biology.

[169]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[170]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[171]  Hiroshi Yamada,et al.  Toxicogenomic multigene biomarker for predicting the future onset of proximal tubular injury in rats. , 2012, Toxicology.

[172]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[173]  Jiri Aubrecht,et al.  Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water , 2015, Critical reviews in toxicology.

[174]  Adetayo Kasim,et al.  A joint modeling approach for uncovering associations between gene expression, bioactivity and chemical structure in early drug discovery to guide lead selection and genomic biomarker development , 2016, Statistical applications in genetics and molecular biology.

[175]  V Fortino,et al.  Feature set optimization in biomarker discovery from genome-scale data , 2020, Bioinform..

[176]  Mathieu Vinken,et al.  Omics-based input and output in the development and use of adverse outcome pathways , 2019, Current Opinion in Toxicology.

[177]  Dirk Grimm,et al.  The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression , 2011, Silence.