Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors.

Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the cornerstone for next-generation electric devices, but the development is highly limited by the weak ferromagnetic coupling and low Curie temperature ( TC). Here, we reported a general mechanism which can significantly enhance the ferromagnetic coupling in 2D semiconductors without introducing carriers. On the basis of a double-orbital model, we revealed that the superexchange-driven ferromagnetism is closely related to the virtual exchange gap, and lowering this gap by isovalent alloying can significantly enhance the ferromagnetic (FM) coupling. On the basis of the experimentally available two-dimensional CrI3 and CrGeTe3, the FM coupling in two semiconducting alloy compounds CrWI6 and CrWGe2Te6 monolayers are calculated to be enhanced by 3∼5 times without introducing any carriers. Furthermore, a room-temperature ferromagnetic semiconductor is achieved under a small in-plane strain (4%). Thus, our findings not only deepen the understanding of FM semiconductors but also open a new door for realistic spintronics.

[1]  Jianfeng Wang,et al.  Realization of Lieb Lattice in Covalent-organic Frameworks with Tunable Topology and Ferromagnetism , 2019 .

[2]  E. Kan,et al.  Mechanical, Electronic, and Magnetic Properties of NiX2 (X = Cl, Br, I) Layers , 2019, ACS omega.

[3]  H. Xiang,et al.  Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer. , 2018, Physical review letters.

[4]  Jingbo Li,et al.  A two-dimensional Fe-doped SnS2 magnetic semiconductor , 2017, Nature Communications.

[5]  Jinlong Yang,et al.  Room-Temperature Ferromagnetism in Two-Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. , 2017, Nano letters.

[6]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[7]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[8]  R. Hajra,et al.  Influence of tungsten on transformation characteristics in P92 ferritic–martensitic steel , 2016 .

[9]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[10]  P. Wang,et al.  Predicting a ferrimagnetic phase of Zn(2)FeOsO(6) with strong magnetoelectric coupling. , 2014, Physical review letters.

[11]  X. Gong,et al.  Prediction of silicon-based layered structures for optoelectronic applications. , 2014, Journal of the American Chemical Society.

[12]  Jinlong Yang,et al.  CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors , 2014 .

[13]  G. Giovannetti,et al.  Dual nature of the ferroelectric and metallic state in LiOsO 3 , 2014, 1404.7705.

[14]  Subash Adhikari,et al.  Ferromagnetism in MnX2 (X = S, Se) monolayers. , 2014, Physical chemistry chemical physics : PCCP.

[15]  Qiang Sun,et al.  Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet. , 2014, Nanoscale.

[16]  Tomasz Dietl,et al.  Dilute ferromagnetic semiconductors: Physics and spintronic structures , 2013, 1307.3429.

[17]  Tsubokawa Ichiro On the Magnetic Properties of a CrBr3 Single Crystal , 2013 .

[18]  Jian Lv,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[19]  Yugui Yao,et al.  Microscopic theory of quantum anomalous Hall effect in graphene , 2012, 1201.0543.

[20]  Tomasz Dietl,et al.  A ten-year perspective on dilute magnetic semiconductors and oxides. , 2010, Nature materials.

[21]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[22]  A. Fert Nobel Lecture: Origin, development, and future of spintronics , 2008 .

[23]  Influence of epitaxial strain on the ferromagnetic semiconductorEuO: First-principles calculations , 2008 .

[24]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[25]  Koji Ando,et al.  Seeking Room-Temperature Ferromagnetic Semiconductors , 2006, Science.

[26]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[27]  N. Nagaosa,et al.  Spin current and magnetoelectric effect in noncollinear magnets. , 2004, Physical review letters.

[28]  Yasuhiro Tokura,et al.  Magnetocapacitance effect in multiferroic BiMnO 3 , 2003 .

[29]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[30]  T. Dietl Ferromagnetic semiconductors , 2002, cond-mat/0201282.

[31]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[32]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[33]  H. Ohno,et al.  Making nonmagnetic semiconductors ferromagnetic , 1998, Science.

[34]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[37]  P. Dederichs,et al.  Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. , 1994, Physical review. B, Condensed matter.

[38]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[39]  J. Connolly,et al.  Density-functional theory applied to phase transformations in transition-metal alloys , 1983 .

[40]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[41]  J. M. Hastings,et al.  Magnetic Structure and Metamagnetism of HgCr2S4 , 1967 .

[42]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[43]  H. Lehmann,et al.  Insulating Ferromagnetic Spinels , 1965 .

[44]  J. V. Vleck,et al.  Ferromagnetic Interaction in EuO , 1961 .

[45]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[46]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[47]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .