Numerical Methods for Simulation of Guitar Distortion Circuits

Electric guitarists prefer analog distortion effects over many digital implementations. This article suggests reasons for this and proposes that detailed study of the electrical physics of guitar distortion circuits provides insight to design more accurate emulations. This work introduces real- time emula- tion applied to guitar audio amplifi ers in the form of a tutorial about relevant numerical methods and a case study. The results here make a compelling case for simulating musical electronics using numerical methods in real time. Analog guitar distortion effect devices known as solid- state distortion boxes commonly include a diode clipper circuit with an embedded low- pass fi lter. These distortion- effect devices can be mod- eled and accurately simulated as Ordinary Differen- tial Equations (ODEs). A survey and a comparison of the basic numerical integration methods are presented as they apply to simulating circuits for audio processing, with the widely used diode clipper presented as an example. A dedicated simulator for the diode clipper has been developed to compare several numerical integration methods and their real- time feasibility. We found that implicit or semi- implicit solvers are preferred, although the prefi lter / static nonlinearity approximation comes surprisingly close to the actual solution.

[1]  Matti Karjalainen,et al.  Wave Digital Simulation of a Vacuum-Tube Amplifier , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[2]  Daniel Arfib Digital Synthesis of Complex Spectra by means of Multiplication of Non-linear Distorted Sine Waves , 1978, ICMC.

[3]  Matti Karjalainen,et al.  Virtual Air Guitar , 2006 .

[4]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[5]  Jacob K. White,et al.  Relaxation Techniques for the Simulation of VLSI Circuits , 1986 .

[6]  Gerry Leversha,et al.  Introduction to numerical analysis (3rd edn), by J. Stoer and R. Bulirsch. Pp. 744. £49. 2002. ISBN 0 387 95452 X (Springer-Verlag). , 2004, The Mathematical Gazette.

[7]  Markus Sapp,et al.  Simulation of vacuum‐tube amplifiers , 1999 .

[8]  Jiri Misurec,et al.  CHARACTERISTICS OF BROKEN-LINE APPROXIMATION AND ITS USE IN DISTORTION AUDIO EFFECTS , 2007 .

[9]  William H. Press,et al.  Numerical recipes in C , 2002 .

[10]  William L. Martens,et al.  Psychophysical Calibration of Sharpness for Multiparameter Distortion Effects Processing , 2003 .

[11]  Augusto Sarti,et al.  Toward nonlinear wave digital filters , 1999, IEEE Trans. Signal Process..

[12]  Vesa Välimäki,et al.  Oscillator and Filter Algorithms for Virtual Analog Synthesis , 2006, Computer Music Journal.

[13]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[14]  Jonathan S. Abel,et al.  A Technique for Nonlinear System Measurement , 2006 .

[15]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.

[16]  Udo Zoelzer,et al.  DAFX: Digital Audio Effects , 2011 .

[17]  Stefan Bilbao,et al.  A Virtual Model of Spring Reverberation , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[18]  Jonathan S. Abel,et al.  SIMPLIFIED, PHYSICALLY-INFORMED MODELS OF DISTORTION ANDOVERDRIVE GUITAR EFFECTS PEDALS , 2007 .

[19]  Jonathan S. Abel,et al.  SIMULATION OF THE DIODE LIMITER IN GUITAR DISTORTION CIRCUI TS BY NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS , 2007 .

[20]  E. Süli,et al.  Numerical Solution of Ordinary Differential Equations , 2021, Foundations of Space Dynamics.

[21]  Alberto L. Sangiovanni-Vincentelli,et al.  Relaxation-based electrical simulation , 1983, IEEE Transactions on Electron Devices.

[22]  Julius O. Smith,et al.  Automated Physical Modeling of Nonlinear Audio Circuits For Real-Time Audio Effects—Part I: Theoretical Development , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[23]  Pablo Fernandez-Cid,et al.  MWD: MULTIBAND WAVESHAPING DISTORTION , 1999 .

[24]  Udo Zölzer,et al.  DISCRETE-TIME MODELS FOR NONLINEAR AUDIO SYSTEMS , 1999 .

[25]  Z Udo DISCRETE-TIME MODELS FOR NONLINEAR AUDIO SYSTEMS , 1999 .

[26]  Thomas Serafini,et al.  State variable changes to avoid non computational issues , 2003 .

[27]  Karlheinz Ochs,et al.  Generation of wave digital structures for networks containing multiport elements , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Marina Bosi,et al.  Introduction to Digital Audio Coding and Standards , 2004, J. Electronic Imaging.

[29]  Judith C. Brown Calculation of a constant Q spectral transform , 1991 .

[30]  Stewart Lawson,et al.  Wave digital filters , 1990 .

[31]  Karlheinz Ochs,et al.  Synthesis and Design of Passive Runge-Kutta Methods , 2001 .

[32]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[33]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[34]  Martin Gromowski,et al.  A MEASUREMENT TECHNIQUE FOR HIGHLY NONLINEAR TRANSFER FUNCTIONS , 2002 .

[35]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[36]  Pamela G. Taylor,et al.  Introduction: The Digital , 2010 .

[37]  Marc Le Brun,et al.  Digital Waveshaping Synthesis , 1979 .

[38]  Augusto Sarti,et al.  NON-LINEAR DIGITAL IMPLEMENTATION OF A PARAMETRIC ANALOG TUBE GROUND CATHODE AMPLIFIER , 2007 .

[39]  L. Shampine,et al.  Numerical Solution of Ordinary Differential Equations. , 1995 .

[40]  Karlheinz Ochs,et al.  Improving wave digital simulation by extrapolation techniques , 2002 .

[41]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[42]  Thomas Hélie ON THE USE OF VOLTERRA SERIES FOR REAL-TIME SIMULATIONS OF WEAKLY NONLINEAR ANALOG AUDIO DEVICES: APPLICATION TO THE MOOG LADDER FILTER , 2006 .

[43]  Julius O. Smith,et al.  DISCRETIZATION OF THE '59 FENDER BASSMAN TONE STACK , 2006 .

[44]  K. Meerkotter,et al.  Digital simulation of nonlinear circuits by wave digital filter principles , 1989, IEEE International Symposium on Circuits and Systems,.

[45]  Antti Huovilainen NON-LINEAR DIGITAL IMPLEMENTATION OF THE MOOG LADDER FILTER , 2004 .

[46]  Jiri Schimmel USING NONLINEAR AMPLIFIER SIMULATION IN DYNAMIC RANGE CONTROLLERS , 2003 .