The Medicago truncatula gene expression atlas web server

BackgroundLegumes (Leguminosae or Fabaceae) play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA) web server for this purpose.DescriptionThe Medicago truncatula Gene Expression Atlas (MtGEA) web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible at: http://bioinfo.noble.org/gene-atlas/.ConclusionsThe MtGEA web server has a well managed rich data set, and offers data retrieval and analysis tools provided in the web platform. It's proven to be a powerful resource for plant biologists to effectively and efficiently identify Medicago transcripts of interest from a multitude of aspects, formulate hypothesis about gene function, and overall interpret the Medicago genome from a systematic point of view.

[1]  R. Dixon,et al.  A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula , 2008, Proceedings of the National Academy of Sciences.

[2]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[3]  S. Long Genes and signals in the rhizobium-legume symbiosis. , 2001, Plant physiology.

[4]  Mark Stitt,et al.  Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. , 2004, The Plant journal : for cell and molecular biology.

[5]  J. Hofer,et al.  Legume Transcription Factors: Global Regulators of Plant Development and Response to the Environment1[W] , 2007, Plant Physiology.

[6]  G. Stacey,et al.  Genetics and functional genomics of legume nodulation. , 2006, Current opinion in plant biology.

[7]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[8]  D. Cook,et al.  Medicago truncatula--a model in the making! , 1999, Current opinion in plant biology.

[9]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[10]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[11]  Patrick X Zhao,et al.  Large-scale Insertional Mutagenesis Using the Tnt1 Retrotransposon in the Model Legume Medicago Truncatula , 2007 .

[12]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[13]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[14]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Patrick Xuechun Zhao,et al.  PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results , 2007, BMC Bioinformatics.

[16]  M. J. Harrison,et al.  MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. , 1999, Annual review of plant physiology and plant molecular biology.

[17]  Christopher D. Town,et al.  Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling , 2008, Plant Molecular Biology.

[18]  R. Dixon,et al.  Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula , 2007, Proceedings of the National Academy of Sciences.

[19]  R. Dixon,et al.  Metabolic and genetic perturbations accompany the modification of galactomannan in seeds of Medicago truncatula expressing mannan synthase from guar (Cyamopsis tetragonoloba L.). , 2008, Plant biotechnology journal.

[20]  B. Rolfe,et al.  Genome-wide transcriptional analysis of super-embryogenic Medicago truncatula explant cultures , 2008, BMC Plant Biology.

[21]  M. Martin-Magniette,et al.  Systemic Signaling of the Plant Nitrogen Status Triggers Specific Transcriptome Responses Depending on the Nitrogen Source in Medicago truncatula1[W] , 2008, Plant Physiology.

[22]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[23]  Georg F. Weiller,et al.  GeneBins: a database for classifying gene expression data, with application to plant genome arrays , 2007, BMC Bioinformatics.

[24]  J. Downie,et al.  Calcium, kinases and nodulation signalling in legumes , 2004, Nature Reviews Molecular Cell Biology.

[25]  G. Weiller,et al.  Transcriptional profiling of Medicago truncatula meristematic root cells , 2008, BMC Plant Biology.

[26]  H. Mori,et al.  Genome Structure of the Legume, Lotus japonicus , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[27]  Lloyd W. Sumner,et al.  MedicCyc: a biochemical pathway database for Medicago truncatula , 2007, Bioinform..

[28]  C. Vance,et al.  Legumes: Importance and Constraints to Greater Use , 2003, Plant Physiology.

[29]  G. Weiller,et al.  A gene expression atlas of the model legume Medicago truncatula. , 2008, The Plant journal : for cell and molecular biology.

[30]  R. Dixon,et al.  Global gene expression profiling during Medicago truncatula-Phymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development. , 2009, Molecular plant-microbe interactions : MPMI.

[31]  T. Harkins,et al.  Transcriptome sequencing of the Microarray Quality Control (MAQC) RNA reference samples using next generation sequencing , 2009, BMC Genomics.

[32]  E. Blancaflor,et al.  Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis , 2009, BMC Plant Biology.