Factoring Polynomials over Local Fields II

We present an algorithm for factoring polynomials over local fields, in which the Montes algorithm is combined with elements from Zassenhaus Round Four algorithm. This algorithm avoids the computation of characteristic polynomials and the resulting precision problems that occur in the Round Four algorithm.

[1]  David Ford,et al.  On the Complexity of the Montes Ideal Factorization Algorithm , 2010, ANTS.

[2]  Öystein Ore,et al.  Newtonsche Polygone in der Theorie der algebraischen Körper , 1928 .

[3]  Xavier-François Roblot,et al.  A fast algorithm for polynomial factorization over Q , 1994 .

[4]  Jesús Montes,et al.  Polígonos de Newton de orden superior y aplicaciones aritméticas , 1999 .

[5]  Sebastian Pauli,et al.  Factoring Polynomials Over Local Fields , 2001, J. Symb. Comput..

[6]  E. Nart,et al.  Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields , 2008, 0807.4065.

[7]  S. Maclane A construction for absolute values in polynomial rings , 1936 .

[8]  David Ford,et al.  Implementing the Round Four maximal order algorithm , 1994 .

[9]  Olga Veres On the complexity of polynomial factorization over P-adic fields , 2009 .

[10]  Daniel M. Gordon,et al.  Factoring Polynominals over p-Adic Fields , 2000, ANTS.

[11]  Enric Nart,et al.  On a Theorem of Ore , 1992 .

[12]  Sebastian Pauli,et al.  A fast algorithm for polynomial factorization over $\mathbb {Q}_p$ , 2002 .

[13]  William Stein,et al.  SAGE: Software for Algebra and Geometry Experimentation , 2006 .

[14]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[15]  Erich Kaltofen,et al.  Subquadratic-time factoring of polynomials over finite fields , 1995, STOC '95.

[16]  Enric Nart,et al.  Newton polygons of higher order in algebraic number theory , 2008, 0807.2620.

[17]  D. Cantor,et al.  Factoring polynomials over p-adic fields , 2000 .