Optimization of Sparse Concentric Ring Arrays for Low Sidelobe

To lower the peak sidelobe level (PSLL) of sparse concentric ring arrays, a method with multiple design constraints that embed a function model into modified real genetic algorithm (MGA) and select the grid ring radii as optimization individual to synthesize sparse concentric ring arrays is proposed. The multiple constraints include the array aperture, the minimum element spacing, and the number of elements. The proposed method dynamically calculates the ratio of element on each ring, and it has a faster convergence rate than other algorithms. The MGA uses real number to code the optimization variable, and it reduces the complexity of coding and improves the search efficiency. Finally, the results demonstrate the accuracy and effectiveness of the algorithm.

[1]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[2]  Carlos A. Brizuela,et al.  A comparison of NSGA-II, DEMO, and EM-MOPSO for the multi-objective design of concentric rings antenna arrays , 2013 .

[3]  Marco A. Panduro,et al.  Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms , 2006 .

[4]  V. Murino,et al.  Stochastic optimization of linear sparse arrays , 1999 .

[5]  Yang Hao What’s New About AWPL? , 2016 .

[6]  P. Minvielle,et al.  Sparse Antenna Array Optimization With the Cross-Entropy Method , 2011, IEEE Transactions on Antennas and Propagation.

[7]  Fang Li,et al.  Reducing the Number of Elements in Linear and Planar Antenna Arrays With Sparseness Constrained Optimization , 2011, IEEE Transactions on Antennas and Propagation.

[8]  Jaehoon Choi,et al.  Dual-Band On-Body Repeater Antenna for In-on-On WBAN Applications , 2013 .

[9]  Hui Chen,et al.  Modified Real GA for the Synthesis of Sparse Planar Circular Arrays , 2016, IEEE Antennas and Wireless Propagation Letters.

[10]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[11]  R. Haupt,et al.  Thinned concentric ring arrays , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[12]  Marco A. Panduro,et al.  Design of concentric ring antenna array for a reconfigurable isoflux pattern , 2013 .

[13]  Marco A. Panduro,et al.  Synthesis of sparse circular antenna arrays applying a tapering technique over reconstructed continuous current distribution , 2016 .

[14]  Qing-Qiang He,et al.  Design of Microstrip Array Antenna by Using Active Element Pattern Technique Combining with Taylor Synthesis Method , 2008 .

[15]  A. Rydberg,et al.  Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm , 2003 .

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  R. Haupt,et al.  Optimized Element Spacing for Low Sidelobe Concentric Ring Arrays , 2008, IEEE Transactions on Antennas and Propagation.

[18]  Carlos A. Brizuela,et al.  Design of electronically steerable linear arrays with evolutionary algorithms , 2008, Appl. Soft Comput..

[19]  Ángel G. Andrade,et al.  Design of sparse concentric rings array for LEO satellites , 2015 .

[20]  Carlos A. Brizuela,et al.  Evolutionary multi‐objective design of non‐uniform circular phased arrays , 2008 .

[21]  Hans Steyskal The Woodward-Lawson method - To bury or not to bury? , 1989 .

[22]  R. Das,et al.  Concentric ring array , 1966 .

[23]  Er-Ping Li,et al.  Experimental Characterization of Radio Channel in Ruins Environment , 2016, IEEE Antennas and Wireless Propagation Letters.