Stability Analysis of the Linear Time-Invariant Ultra-WideBand Channel

The stability of a general Linear Time-Invariant (LTI) Ultra-WideBand (UWB) Channel Impulse Response (CIR) model is investigated. Since the s-domain or z-domain function of the UWB CIR has an extremely high number of singularities, it cannot be automatically guaranteed that none of the poles falls on the right-half of the s-plane or outside the unit-circle of the z-plane. Hence the stability analysis necessitates the exhaustive testing of classical stability criterion for a potentially excessive number of poles. We circumvent this arduous task by developing the closed-form time-domain response of the so-called homogenous, non-homogenous and vectorial LTI causal UWB system. Furthermore, the normalized settling time of the step response is evaluated for diverse damping coefficients. Finally, a stability case-study is provided with the aid of Nichols chart. Streszczenie. Zbadano stabilnośc ultra szerokopasmowego kanalu LTI. Poniewaz na plaszczyźnie s i z odpowiedź impulsowa ma wiele osobliwości nie mozna automatycznie zagwarantowac, ze wszystkie są w prawe polowce plaszczyzny s lub w2ewnątrz kola jednostkowego z. W pracy zaproponowano metode określania stabilności kanalu. (Analiza stabilności ultra szerokopasmowego kanalu LTI)

[1]  Chia-Chin Chong,et al.  A Comprehensive Standardized Model for Ultrawideband Propagation Channels , 2006, IEEE Transactions on Antennas and Propagation.

[2]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[3]  Gregorio Vázquez Grau,et al.  Detection of PPM-UWB random signals , 2008 .

[4]  Floyd M. Gardner,et al.  Phaselock techniques , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Harley Flanders,et al.  Differentiation Under the Integral Sign , 1973 .

[6]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).