Diversity of Alkane Hydroxylase Systems in the Environment

The first step in the aerobic degradation of alkanes by bacteria, yeasts, and fungi is catalyzed by oxygenases. These enzymes, which introduce oxygen atoms derived from molecular oxygen into the alkane substrate, play an important role in oil bioremediation and in the cometabolic degradation of compounds such as trichloroethylene and fuel oxygenates. In addition, they are useful biocatalysts and important models for a difficult chemical reaction: the regio- and stereospecific activation of C-H bonds. Several unrelated enzyme classes catalyze the oxidation of alkanes. Alkane-degrading yeast strains contain multiple alkane hydroxylases belonging to the P450 superfamily, while many bacteria contain enzymes related to the Pseudomonas putida GPo1 membrane-bound alkane hydroxylase system. Short-chain alkanes are probably oxidized by alkane hydroxylases related to the soluble and particulate methane monooxygenases. Only the membrane-bound enzymes have been studied with respect to their prevalence in environments such as soils or aquifers.

[1]  B. Witholt,et al.  Gene Cloning and Characterization of Multiple Alkane Hydroxylase Systems in Rhodococcus Strains Q15 and NRRL B-16531 , 2002, Applied and Environmental Microbiology.

[2]  L. Sayavedra-Soto,et al.  Molecular analysis of the soluble butane monooxygenase from 'Pseudomonas butanovora'. , 2002, Microbiology.

[3]  T. Chakrabarti,et al.  Pseudomonas indica sp. nov., a novel butane-utilizing species. , 2002, International journal of systematic and evolutionary microbiology.

[4]  J. B. Beilen,et al.  Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. , 2002, FEMS microbiology ecology.

[5]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[6]  K. Timmis,et al.  Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. , 2002, International journal of systematic and evolutionary microbiology.

[7]  B. Witholt,et al.  Practical syntheses of N-substituted 3-hydroxyazetidines and 4-hydroxypiperidines by hydroxylation with Sphingomonas sp. HXN-200. , 2002, Organic letters.

[8]  Martin Neuenschwander,et al.  Rubredoxins Involved in Alkane Oxidation , 2002, Journal of bacteriology.

[9]  B. Witholt,et al.  Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria , 2002, Journal of bacteriology.

[10]  J. Murrell,et al.  Identification of the Functionally Active Methanotroph Population in a Peat Soil Microcosm by Stable-Isotope Probing , 2002, Applied and Environmental Microbiology.

[11]  S. Revah,et al.  Biofiltration of methyl tert-butyl ether vapors by cometabolism with pentane: modeling and experimental approach. , 2002, Environmental science & technology.

[12]  Kazuya Watanabe,et al.  Molecular diversity of pMMO and sMMO in a TCE‐contaminated aquifer during bioremediation , 2001 .

[13]  B. Witholt,et al.  Preparation of (R)- and (S)-N-protected 3-hydroxypyrrolidines by hydroxylation with Sphingomonas sp. HXN-200, a highly active, regio- and stereoselective, and easy to handle biocatalyst. , 2001, The Journal of organic chemistry.

[14]  D. Arp,et al.  Two Distinct Monooxygenases for Alkane Oxidation inNocardioides sp. Strain CF8 , 2001, Applied and Environmental Microbiology.

[15]  W. Liesack,et al.  Detection of Methanotroph Diversity on Roots of Submerged Rice Plants by Molecular Retrieval ofpmoA, mmoX, mxaF, and 16S rRNA and Ribosomal DNA, Including pmoA-Based Terminal Restriction Fragment Length Polymorphism Profiling , 2001, Applied and Environmental Microbiology.

[16]  T. Chakrabarti,et al.  A novel gene encoding a 54 kDa polypeptide is essential for butane utilization by Pseudomonas sp. IMT37. , 2001, Microbiology.

[17]  T. Maier,et al.  Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. , 2001, Biochemical and biophysical research communications.

[18]  F. Rojo,et al.  The Alkane Hydroxylase Gene of Burkholderia cepacia RR10 Is under Catabolite Repression Control , 2001, Journal of bacteriology.

[19]  M. Seeger,et al.  New alkane-responsive expression vectors for Escherichia coli and pseudomonas. , 2001, Plasmid.

[20]  N. Fortin,et al.  Selection of Specific Endophytic Bacterial Genotypes by Plants in Response to Soil Contamination , 2001, Applied and Environmental Microbiology.

[21]  S. Panke,et al.  Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. , 2001, Microbiology.

[22]  G. E. Speitel,et al.  Kinetics of Methyl t-Butyl Ether Cometabolism at Low Concentrations by Pure Cultures of Butane-Degrading Bacteria , 2001, Applied and Environmental Microbiology.

[23]  Y. Sakai,et al.  Gene Structures and Regulation of the Alkane Hydroxylase Complex in Acinetobacter sp. Strain M-1 , 2001, Journal of bacteriology.

[24]  B. Witholt,et al.  Preparation of (S)-N-substituted 4-hydroxy-pyrrolidin-2-ones by regio- and stereoselective hydroxylation with Sphingomonas sp. HXN-200. , 2000, Organic letters.

[25]  J. B. van Beilen,et al.  Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. , 2000, Environmental microbiology.

[26]  A. Ohta,et al.  The cytochrome P450ALK multigene family of an n‐alkane‐assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members , 2000, Yeast.

[27]  U. Klinner,et al.  Distribution of alkB genes within n‐alkane‐degrading bacteria , 2000, Journal of applied microbiology.

[28]  C. Schmitz,et al.  Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms , 2000, Applied Microbiology and Biotechnology.

[29]  Thomas B. Stauffer,et al.  Changes in Subsurface Catabolic Gene Frequencies during Natural Attenuation of Petroleum Hydrocarbons , 2000 .

[30]  R. Auria,et al.  Cometabolic biodegradation of methyl tert-butyl ether by a soil consortium: Effect of components present in gasoline. , 2000, The Journal of general and applied microbiology.

[31]  Lewis Semprini,et al.  Diversity in Butane Monooxygenases among Butane-Grown Bacteria , 1999, Applied and Environmental Microbiology.

[32]  B. Witholt,et al.  Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. , 1999, Environmental microbiology.

[33]  B. Witholt,et al.  Preparation of optically active N-benzyl-3-hydroxypyrrolidine by enzymatic hydroxylation , 1999 .

[34]  S. Revah,et al.  Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane , 1999, Applied Microbiology and Biotechnology.

[35]  J. Yadav,et al.  Multiple p450alk (cytochrome P450 alkane hydroxylase) genes from the halotolerant yeast Debaryomyces hansenii. , 1999, Gene.

[36]  D. Becher,et al.  Oxygenation Cascade in Conversion of n-Alkanes to α,ω-Dioic Acids Catalyzed by Cytochrome P450 52A3* , 1998, The Journal of Biological Chemistry.

[37]  F. Widdel,et al.  Anaerobic bacterial metabolism of hydrocarbons , 1998 .

[38]  G. Sayler,et al.  Assessment of the Microbiological Potential for the Natural Attenuation of Petroleum Hydrocarbons in a Shallow Aquifer System , 1998, Microbial Ecology.

[39]  L. Whyte,et al.  Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcussp , 1998, Applied and Environmental Microbiology.

[40]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[41]  K. Timmis,et al.  Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. , 1998, International journal of systematic bacteriology.

[42]  W. Hillen,et al.  Alkane Hydroxylase from Acinetobactersp. Strain ADP1 Is Encoded by alkM and Belongs to a New Family of Bacterial Integral-Membrane Hydrocarbon Hydroxylases , 1998, Applied and Environmental Microbiology.

[43]  A. Ohta,et al.  Isozyme Function of n-Alkane-inducible Cytochromes P450 in Candida maltosa Revealed by Sequential Gene Disruption* , 1998, The Journal of Biological Chemistry.

[44]  J. Harsh,et al.  Hybridization Analysis of Microbial DNA from Fuel Oil–Contaminated and Noncontaminated Soil , 1997, Microbial Ecology.

[45]  C. Condee,et al.  Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria , 1997, Applied and environmental microbiology.

[46]  Y. Tani,et al.  Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1 , 1996, Journal of bacteriology.

[47]  A. Munro,et al.  Bacterial cytochromes P‐450 , 1996, Molecular microbiology.

[48]  L. Whyte,et al.  Assessment of the biodegradation potential of psychrotrophic microorganisms. , 1996, Canadian journal of microbiology.

[49]  R. Crawford,et al.  Extraction and purification of microbial DNA from petroleum‐contaminated soils and detection of low numbers of toluene, octane and pesticide degraders by multiplex polymerase chain reaction and Southern analysis , 1995, Molecular ecology.

[50]  T. Matsui,et al.  Asymmetric Oxidation of Isopropyl Moieties of Aliphatic and Aromatic Hydrocarbons by Rhodococcus sp. 11B , 1995 .

[51]  J. Bonner,et al.  Propane‐Induced biodegradation of vapor phase trichoroethylene , 1995, Biotechnology and bioengineering.

[52]  L. Alvarez-Cohen,et al.  Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol , 1995, Biotechnology and bioengineering.

[53]  M. Wubbolts,et al.  Genetics of alkane oxidation byPseudomonas oleovorans , 1994, Biodegradation.

[54]  R. Atlas,et al.  Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. , 1994, Canadian journal of microbiology.

[55]  B. Fox,et al.  Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. , 1994, Biochemistry.

[56]  J. Kingma,et al.  Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1 , 1994 .

[57]  J. Murrell,et al.  Bacterial oxidation of propane. , 1994, FEMS microbiology letters.

[58]  M. Bagby,et al.  Microbial oxidation of cumene by octane-grown cells , 1994, Applied Microbiology and Biotechnology.

[59]  Colin Ratledge,et al.  The enzymology of dicarboxylic acid formation by Corynebacterium sp. strain 7E1C grown on n-alkanes , 1993 .

[60]  A. Kiener,et al.  Enzymatic Oxidation of Methyl Groups on Aromatic Heterocycles: A Versatile Method for the Preparation of Heteroaromatic Carboxylic Acids , 1992 .

[61]  B. Witholt,et al.  Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. , 1992, The Journal of biological chemistry.

[62]  Chi‐Huey Wong,et al.  Pseudomonas oleovorans monooxygenase catalyzed asymmetric epoxidation of allyl alcohol derivatives and hydroxylation of a hypersensitive radical probe with the radical ring opening rate exceeding the oxygen rebound rate , 1991 .

[63]  G. Vriend,et al.  Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. , 1990, Journal of molecular biology.

[64]  J. Kingma,et al.  The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. , 1989, The Journal of biological chemistry.

[65]  J. Kingma,et al.  The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. , 1989, The Journal of biological chemistry.

[66]  D. Higgins,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Clustal: Blockina Blockinpackage Blockinfor Blockinperforming Multiple Blockinsequence Blockinalignment Blockinon Blockina Minicomputer Article Blockin Blockinin Blockin , 2022 .

[67]  O. Käppeli,et al.  Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors , 1986, Applied Microbiology and Biotechnology.

[68]  K. Schügerl K. Kieslich (Ed.): Biotransformations, Vol. 6a aus der Reihe: Biotechnology, A Comprehensive Treatise in 8 Volumes, Verlag Chemie, Weinheim, Deerfield Beach — Florida, Basel 1984. 473 Seiten, Preis: DM 495,—(Subskriptionspreis: DM 425,—). , 1985 .

[69]  L. Brown,et al.  New Type of Oxygenase Involved in the Metabolism of Propane and Isobutane , 1984, Applied and environmental microbiology.

[70]  A. J. Markovetz,et al.  A novel ketone monooxygenase from Pseudomonas cepacia. Purification and properties. , 1977, The Journal of biological chemistry.

[71]  A. Goldstein,et al.  Purification and properties , 1975 .

[72]  L. P. Macham,et al.  Pseudomonas aeruginosa mutants defective in heptane oxidation. , 1974, Journal of general microbiology.

[73]  A. J. Markovetz,et al.  Purification and Properties of Undecyl Acetate Esterase from Pseudomonas cepacia Grown on 2-Tridecanone , 1974, Journal of bacteriology.

[74]  M. Doudoroff,et al.  Nucleic Acid Homologies in the Genus Pseudomonas , 1973 .

[75]  R. Schwartz,et al.  Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements. , 1973, Applied microbiology.

[76]  C. Hou,et al.  Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans. , 1973, Applied microbiology.

[77]  A M Chakrabarty,et al.  Genetic regulation of octane dissimilation plasmid in Pseudomonas. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[78]  P. Jenkins,et al.  Mutants of Mycobacterium rhodochrous with Modified Patterns of n-Paraffin Utilization , 1972 .

[79]  M. J. Coon,et al.  Enzymatic oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in hydroxylation. , 1972, The Journal of biological chemistry.

[80]  M. J. Coon,et al.  Enzymatic ω-Oxidation IV. PURIFICATION AND PROPERTIES OF THE ω-HYDROXYLASE OF PSEUDOMONAS OLEOVORANS , 1970 .

[81]  P. Jurtshuk,et al.  The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. , 1970, The Journal of biological chemistry.

[82]  A. J. Markovetz,et al.  Subterminal Oxidation of Aliphatic Hydrocarbons , 1970, Journal of bacteriology.

[83]  B. Holloway Genetics of Pseudomonas. , 1969, Bacteriological reviews.

[84]  E. Juni,et al.  Transformation of Acinetobacter calco-aceticus (Bacterium anitratum) , 1969, Journal of bacteriology.

[85]  P. Jurtshuk,et al.  Cytochrome P-450 involvement in the oxidation of n-octane b cell-free extracts of Corynebacterium sp. strain 7E1C. , 1968, The Journal of biological chemistry.

[86]  A. J. Markovetz,et al.  Oxidative Degradation of Methyl Ketones II. Chemical Pathway for Degradation of 2-Tridecanone by Pseudomonas multivorans and Pseudomonas aeruginosa , 1968, Journal of bacteriology.

[87]  M. J. Coon,et al.  Enzymatic ω-Oxidation III. PURIFICATION AND PROPERTIES OF RUBREDOXIN, A COMPONENT OF THE ω-HYDROXYLATION SYSTEM OF PSEUDOMONAS OLEOVORANS , 1968 .

[88]  A. J. Markovetz,et al.  Bacterial Oxidation of 2-Tridecanone to 1-Undecanol , 1967, Journal of bacteriology.

[89]  C. A. Fewson The growth and metabolic versatility of the gram-negative Bacterium NCIB 8250 ("Vibrio 01"). , 1967, Journal of general microbiology.

[90]  J. Ladd,et al.  The Role of Microorganisms in Petroleum Exploration , 1965 .

[91]  O. Hayaishi,et al.  MECHANISM OF THE PYROCATECHASE REACTION , 1955 .

[92]  G. Fuhs Der mikrobielle Abbau von Kohlenwasserstoffen , 2004, Archiv für Mikrobiologie.

[93]  R. J. Watkinson,et al.  Physiology of aliphatic hydrocarbon-degrading microorganisms , 2004, Biodegradation.

[94]  Effects Oil in the Sea III: Inputs, Fates, and Effects , 2003 .

[95]  J. Sullivan,et al.  Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. , 1998, Critical reviews in microbiology.

[96]  B. Witholt,et al.  Alkane hydroxylase systems in Pseudomonas aeruginosa strains able to grow on n-octane , 1998 .

[97]  K. Wirkner,et al.  Detection of Diverse Cytochrome P450-Dependent Biooxygenation Catalysts in Microorganisms Using a Multipurpose Inducer , 1994 .

[98]  H. Kleber,et al.  Metabolism of Alkanes by Acinetobacter , 1991 .

[99]  J. Kingma,et al.  Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. , 1990, Trends in biotechnology.

[100]  H. Kleber,et al.  Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus. , 1989, Biomedica biochimica acta.

[101]  B. Robertson,et al.  Stereoselective synthesis of S-(-)-B-blockers via microbially produced epoxide intermediates , 1987 .

[102]  G. Défago,et al.  Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco , 1986 .

[103]  C. Ratledge,et al.  physiology of hydrocarbon-utilizing microorganisms , 1984 .

[104]  D. Blanchet,et al.  Enzymology of alkane degradation in pseudomonas aeruginosa , 1983 .

[105]  M. Doudoroff,et al.  Nucleic Acid Homologies in the Genus , 1973 .

[106]  A. C. van der Linden,et al.  Substrate specificity of the paraffin hydroxylase of Pseudomonas aeruginosa. , 1971, Antonie van Leeuwenhoek.

[107]  J. Foster,et al.  Utilization of hydrocarbons and hydrogen by mycobacteria. , 1963, Zeitschrift fur allgemeine Mikrobiologie.

[108]  M. J. Coon,et al.  Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. , 1963, Biochimica et biophysica acta.

[109]  E. Azoulay,et al.  Isolement et caracterisation des enzymes responsables de l'oxydation des hydrocarbures , 1963 .

[110]  J. Heringa,et al.  n-Alkane oxidation by a Pseudomonas. Formation and beta-oxidation of intermediate fatty acids. , 1961, Antonie van Leeuwenhoek.

[111]  G. W. Fuhs [Microbial catabolism of hydrocarbons]. , 1961, Archiv fur Mikrobiologie.