Gradient Surfing: A New Deterministic Approach for Low-Dimensional Global Optimization

We describe a novel global optimization technique which utilizes global minima basins of attraction in order to quickly converge to a global minima. A key to the proposed method is the “steeper goes deeper” heuristic: coupling between magnitudes of gradients on different level sets of a basin of attraction and the depth of its minima. Local minima are avoided with a combination of local optimization and a heuristic-based leaping step. Gradient surfing performance is evaluated across a set of small-scale problems from the literature, and results are compared to those of 12 previously published methods. A practical six-dimensional non-convex image registration application is presented as well, where GS performance exceeds that of classic global optimization methods in both speed and accuracy. Additionally, we validate the optimization method by applying a new Gaussian mixture model benchmark for non-convex function. Finally, the “steeper goes deeper” heuristic is validated empirically on five different classes of non-convex functions using two different evaluation approaches. In all cases, steeper gradients are shown to lead to deeper optima with a high probability.

[1]  Gintautas Dzemyda,et al.  Stochastic and global optimization , 2002 .

[2]  Ohad Ben-Shahar,et al.  Curve completion as minimum action in the primary visual cortex , 2010 .

[3]  D Cvijovicacute,et al.  Taboo search: an approach to the multiple minima problem. , 1995, Science.

[4]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[7]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[8]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[9]  H. K. Abhyankar,et al.  Image Registration Techniques: An overview , 2009 .

[10]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[11]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[12]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[13]  Zbigniew Michalewicz,et al.  Evolutionary algorithms for constrained engineering problems , 1996, Computers & Industrial Engineering.

[14]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[15]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[16]  Yashwant Prasad Singh,et al.  Hybridization of gradient descent algorithms with dynamic tunneling methods for global optimization , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[17]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[18]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[19]  Yashwant Prasad Singh,et al.  Dynamic tunneling based regularization in feedforward neural networks , 2001, Artif. Intell..

[20]  Victor O. K. Li,et al.  Chemical Reaction Optimization: a tutorial , 2012, Memetic Computing.

[21]  Richard H. Byrd,et al.  Numerical optimization 1984 : proceedings of the SIAM Conference on Numerical Optimization, Boulder, Colorado, June 12-14, 1984 , 1985 .

[22]  Jacob Barhen,et al.  TRUST: A deterministic algorithm for global optimization , 1997 .

[23]  James Theiler,et al.  Learning targeted materials properties from data , 2016 .

[24]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[25]  Yong-Jun Wang,et al.  Improving particle swarm optimization performance with local search for high-dimensional function optimization , 2010, Optim. Methods Softw..

[26]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[27]  C. Hwang Simulated annealing: Theory and applications , 1988, Acta Applicandae Mathematicae - An International Survey Journal on Applying Mathematics and Mathematical Applications.

[28]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[29]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[30]  A. Ardeshir Goshtasby,et al.  2-D and 3-D Image Registration: for Medical, Remote Sensing, and Industrial Applications , 2005 .

[31]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[32]  Francesco Lampariello,et al.  A filling function method for unconstrained global optimization , 2015, Comput. Optim. Appl..

[33]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[34]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.

[35]  Nicholas I. M. Gould,et al.  A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds , 1997, Math. Comput..

[36]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[37]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[38]  Yong Yao,et al.  Dynamic tunneling algorithm for global optimization , 1989, IEEE Trans. Syst. Man Cybern..

[39]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[40]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[41]  A. V. Levy,et al.  The Tunneling Algorithm for the Global Minimization of Functions , 1985 .

[42]  Heiko Rieger,et al.  Optimization algorithms in physics , 2001 .

[43]  David J. Evans,et al.  The Annealing Evolution Algorithm as Function Optimizer , 1995, Parallel Comput..

[44]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[45]  H. Sagan Space-filling curves , 1994 .

[46]  D. Draper,et al.  Stochastic Optimization: a Review , 2002 .

[47]  V. Torczon,et al.  A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS , 2002 .

[48]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[50]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[51]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.