Whisking mechanics and active sensing

We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp.

[1]  Nathan G. Clack,et al.  Vibrissa-Based Object Localization in Head-Fixed Mice , 2010, The Journal of Neuroscience.

[2]  David Kleinfeld,et al.  Muscles Involved in Naris Dilation and Nose Motion in Rat , 2015, Anatomical record.

[3]  M. Caria,et al.  Evidence for a trigeminal mesencephalic-hypoglossal nuclei loop involved in controlling vibrissae movements in the rat , 2015, Experimental Brain Research.

[4]  E. Ahissar,et al.  On-going computation of whisking phase by mechanoreceptors , 2016, Nature Neuroscience.

[5]  L. Wineski Facial morphology and vibrissal movement in the golden hamster , 1985, Journal of morphology.

[6]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[7]  Adam Kepecs,et al.  Multiple Modes of Phase Locking between Sniffing and Whisking during Active Exploration , 2013, The Journal of Neuroscience.

[8]  Lauren M Jones,et al.  Precise temporal responses in whisker trigeminal neurons. , 2004, Journal of neurophysiology.

[9]  Florence Richardson A study of the sensory control in the rat. , 1909 .

[10]  Martha Flanders,et al.  Predictive mechanisms in the control of contour following , 2013, Experimental Brain Research.

[11]  Daniel N. Hill,et al.  Primary Motor Cortex Reports Efferent Control of Vibrissa Motion on Multiple Timescales , 2011, Neuron.

[12]  Lucie A. Huet,et al.  Modeling Forces and Moments at the Base of a Rat Vibrissa during Noncontact Whisking and Whisking against an Object , 2014, The Journal of Neuroscience.

[13]  Ehud Ahissar,et al.  Motion Makes Sense: An Adaptive Motor-Sensory Strategy Underlies the Perception of Object Location in Rats , 2015, The Journal of Neuroscience.

[14]  D. Kleinfeld,et al.  Active Spatial Perception in the Vibrissa Scanning Sensorimotor System , 2007, PLoS biology.

[15]  S. B. Vincent The function of the vibrissae in the behavior of the white rat , 1912 .

[16]  Asaf Keller,et al.  Robust Temporal Coding in the Trigeminal System , 2004, Science.

[17]  W. Welker Analysis of Sniffing of the Albino Rat 1) , 1964 .

[18]  K. Moxon,et al.  Responses of Trigeminal Ganglion Neurons during Natural Whisking Behaviors in the Awake Rat , 2007, Neuron.

[19]  F. Helmchen,et al.  Pathway-specific reorganization of projection neurons in somatosensory cortex during learning , 2015, Nature Neuroscience.

[20]  M. Graziano Is Reaching Eye-Centered, Body-Centered, Hand-Centered, or a Combination? , 2001, Reviews in the neurosciences.

[21]  H. Witte,et al.  Structural Characterization of the Whisker System of the Rat , 2012, IEEE Sensors Journal.

[22]  E. Kramer,et al.  The Advantages of a Tapered Whisker , 2010, PloS one.

[23]  Joseph B Schroeder,et al.  Selection of head and whisker coordination strategies during goal-oriented active touch. , 2016, Journal of neurophysiology.

[24]  Dario Campagner,et al.  Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents , 2015, The Journal of Neuroscience.

[25]  Karen A Moxon,et al.  Relationship between physiological response type (RA and SA) and vibrissal receptive field of neurons within the rat trigeminal ganglion. , 2006, Journal of neurophysiology.

[26]  David Kleinfeld,et al.  Hierarchy of orofacial rhythms revealed through whisking and breathing , 2013, Nature.

[27]  Dario Campagner,et al.  Prediction of Primary Somatosensory Neuron Activity During Active Tactile Exploration , 2015 .

[28]  D. Kleinfeld,et al.  Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in a mystacial follicle. , 2015, Journal of neurophysiology.

[29]  M. Hartmann,et al.  Variation in Young's modulus along the length of a rat vibrissa. , 2011, Journal of biomechanics.

[30]  A Keller,et al.  Whisking in air: encoding of kinematics by trigeminal ganglion neurons in awake rats. , 2009, Journal of neurophysiology.

[31]  T. Prescott,et al.  Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. , 2009, Journal of neurophysiology.

[32]  Mitra Hartmann Vibrissa mechanical properties , 2015, Scholarpedia.

[33]  E. Ahissar,et al.  Fast Feedback in Active Sensing: Touch-Induced Changes to Whisker-Object Interaction , 2012, PloS one.

[34]  David Kleinfeld,et al.  The Musculature That Drives Active Touch by Vibrissae and Nose in Mice , 2015, Anatomical record.

[35]  Christopher D. Rahn,et al.  Three-dimensional contact imaging with an actuated whisker , 2005, IEEE Transactions on Robotics.

[36]  M. Hartmann,et al.  Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. , 2012, Journal of neurophysiology.

[37]  Per Magne Knutsen,et al.  Haptic Object Localization in the Vibrissal System: Behavior and Performance , 2006, The Journal of Neuroscience.

[38]  Mitra J Z Hartmann,et al.  Probability distributions of whisker–surface contact: quantifying elements of the rat vibrissotactile natural scene , 2015, The Journal of Experimental Biology.

[39]  Joseph H. Solomon,et al.  The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact , 2011, PLoS Comput. Biol..

[40]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[41]  Per Magne Knutsen,et al.  Vibrissal location coding , 2011, Scholarpedia.

[42]  Rony Azouz,et al.  A Unifying Framework Underlying Mechanotransduction in the Somatosensory System , 2011, The Journal of Neuroscience.

[43]  Mathew H. Evans,et al.  Prediction of primary somatosensory neuron activity during active tactile exploration , 2015, bioRxiv.

[44]  M. Hartmann,et al.  Spatiotemporal Patterns of Contact Across the Rat Vibrissal Array During Exploratory Behavior , 2016, Front. Behav. Neurosci..

[45]  Joseph H. Solomon,et al.  Artificial Whiskers Suitable for Array Implementation: Accounting for Lateral Slip and Surface Friction , 2008, IEEE Transactions on Robotics.

[46]  D Kleinfeld,et al.  Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. , 1997, Journal of neurophysiology.

[47]  E. Ahissar,et al.  Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. , 2006, Journal of neurophysiology.

[48]  Lucie A. Huet,et al.  Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system , 2016, eLife.

[49]  Joseph H. Solomon,et al.  Extracting Object Contours with the Sweep of a Robotic Whisker Using Torque Information , 2010, Int. J. Robotics Res..

[50]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[51]  M. Diamond,et al.  Deciphering the Spike Train of a Sensory Neuron: Counts and Temporal Patterns in the Rat Whisker Pathway , 2006, The Journal of Neuroscience.

[52]  D. Kleinfeld,et al.  Dorsorostral Snout Muscles in the Rat Subserve Coordinated Movement for Whisking and Sniffing , 2012, Anatomical record.

[53]  E. Ahissar,et al.  Temporal and Spatial Characteristics of Vibrissa Responses to Motor Commands , 2010, The Journal of Neuroscience.

[54]  Gregory R. Scholz,et al.  Profile Sensing With an Actuated Whisker , 2002 .

[55]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[56]  D. Simons,et al.  Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. , 1990, Somatosensory & motor research.

[57]  Mitra J Z Hartmann,et al.  Tactile signals transmitted by the vibrissa during active whisking behavior. , 2015, Journal of neurophysiology.

[58]  Robin A A Ince,et al.  Low-Dimensional Sensory Feature Representation by Trigeminal Primary Afferents , 2013, The Journal of Neuroscience.

[59]  Toshio Tsuji,et al.  Active antenna for contact sensing , 1998, IEEE Trans. Robotics Autom..

[60]  Wenyi Yan,et al.  A truncated conical beam model for analysis of the vibration of rat whiskers. , 2013, Journal of biomechanics.

[61]  R. Klatzky,et al.  Haptic perception: A tutorial , 2009, Attention, perception & psychophysics.

[62]  M. Hartmann,et al.  Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa , 2016, Front. Behav. Neurosci..

[63]  G. Debrégeas,et al.  Whisker encoding of mechanical events during active tactile exploration , 2012, Front. Behav. Neurosci..

[64]  E. Ahissar,et al.  Vibrissal Kinematics in 3D: Tight Coupling of Azimuth, Elevation, and Torsion across Different Whisking Modes , 2008, Neuron.

[65]  David Golomb,et al.  Tapered whiskers are required for active tactile sensation , 2013, eLife.

[66]  Per Knutsen Whisking kinematics , 2015, Scholarpedia.

[67]  Joseph H. Solomon,et al.  Biomechanics: Robotic whiskers used to sense features , 2006, Nature.

[68]  D. Kleinfeld,et al.  Vibrissa Self-Motion and Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through Thalamus , 2015, PLoS biology.

[69]  E. Ahissar,et al.  Muscle Architecture in the Mystacial Pad of the Rat , 2010, Anatomical record.

[70]  Lucie A. Huet,et al.  Simulations of a Vibrissa Slipping along a Straight Edge and an Analysis of Frictional Effects during Whisking , 2016, IEEE Transactions on Haptics.

[71]  F. Rice,et al.  Similarities and differences in the innervation of mystacial vibrissal follicle–sinus complexes in the rat and cat: A confocal microscopic study , 2002, The Journal of comparative neurology.

[72]  Joseph H. Solomon,et al.  Radial distance determination in the rat vibrissal system and the effects of Weber's law , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  Ben Mitchinson,et al.  Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact , 2007, Proceedings of the Royal Society B: Biological Sciences.

[74]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[75]  Per Magne Knutsen,et al.  Orthogonal coding of object location , 2009, Trends in Neurosciences.

[76]  R. Klatzky,et al.  Identifying objects from a haptic glance , 1995, Perception & psychophysics.

[77]  Dori Derdikman,et al.  Pre-neuronal morphological processing of object location by individual whiskers , 2013, Nature Neuroscience.

[78]  Wu-Chul Song,et al.  A Mechanism of Rat Vibrissal Movement Based on Actual Morphology of the Intrinsic Muscle Using Three-Dimensional Reconstruction , 2012, Cells Tissues Organs.

[79]  D. Kleinfeld,et al.  Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System , 2011, Neuron.

[80]  M. Caria,et al.  Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception , 2010, Behavioral and Brain Functions.

[81]  Nathan G. Clack,et al.  The Mechanical Variables Underlying Object Localization along the Axis of the Whisker , 2013, The Journal of Neuroscience.