Extending the mass “backbone” to short-lived nuclides with ISOLTRAP

[1]  K. Beckert,et al.  Precision experiments with time-resolved Schottky mass spectrometry , 2004 .

[2]  Dieter Ackermann,et al.  First on-line test of SHIPTRAP , 2003 .

[3]  J. Dilling,et al.  The proposed TITAN facility at ISAC for very precise mass measurements on highly charged short-lived isotopes , 2003 .

[4]  F. Ames,et al.  Mass measurements and nuclear physics-recent results from ISOLTRAP , 2003 .

[5]  E. Sauvan,et al.  From direct to absolute mass measurements: A study of the accuracy of ISOLTRAP , 2003 .

[6]  D. Beck,et al.  High-accuracy mass determination of neutron-rich rubidium and strontium isotopes , 2002 .

[7]  R. Schuch,et al.  SMILETRAP—A Penning trap facility for precision mass measurements using highly charged ions , 2002 .

[8]  W. Lauth,et al.  SHIPTRAP—a capture and storage facility for heavy radionuclides at GSI , 2002 .

[9]  J. Äystö,et al.  Penning trap at IGISOL , 2002 .

[10]  H. Savajols The SPEG Mass Measurement Program at GANIL , 2001 .

[11]  J. Clark,et al.  The Canadian Penning Trap mass spectrometer , 1997 .

[12]  A. H. Wapstra,et al.  The 1995 update to the atomic mass evaluation , 1995 .

[13]  A. H. Wapstra,et al.  The 1993 atomic mass evaluation: (IV) Evaluation of input data, adjustment procedures , 1993 .

[14]  A. Przewłoka,et al.  Measurements ofβ-endpoint-energies using a magnetic electron separator , 1992 .

[15]  J.K.P. Lee,et al.  Precise Qβ measurements for A = 91 to 93 mass chains , 1983 .

[16]  F. Wohn,et al.  Decay energies of gaseous fission products and their daughters for A = 88 to 93 and A = 138 to 142 , 1978 .