Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures.

Two-dimensional (2D) materials have attracted increasing research interest because of the abundant choice of materials with diverse and tunable electronic, optical, and chemical properties. Moreover, 2D material based heterostructures combining several individual 2D materials provide unique platforms to create an almost infinite number of materials and show exotic physical phenomena as well as new properties and applications. To achieve these high expectations, methods for the scalable preparation of 2D materials and 2D heterostructures of high quality and low cost must be developed. Chemical vapor deposition (CVD) is a powerful method which may meet the above requirements, and has been extensively used to grow 2D materials and their heterostructures in recent years, despite several challenges remaining. In this review of the challenges in the CVD growth of 2D materials, we highlight recent advances in the controlled growth of single crystal 2D materials, with an emphasis on semiconducting transition metal dichalcogenides. We provide insight into the growth mechanisms of single crystal 2D domains and the key technologies used to realize wafer-scale growth of continuous and homogeneous 2D films which are important for practical applications. Meanwhile, strategies to design and grow various kinds of 2D material based heterostructures are thoroughly discussed. The applications of CVD-grown 2D materials and their heterostructures in electronics, optoelectronics, sensors, flexible devices, and electrocatalysis are also discussed. Finally, we suggest solutions to these challenges and ideas concerning future developments in this emerging field.

[1]  Ilkeun Lee,et al.  MoS2-graphene heterostructures as efficient organic compounds sensing 2D materials , 2019, Carbon.

[2]  Qiang Zhang,et al.  3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis , 2018, Advanced materials.

[3]  Jun Luo,et al.  Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices , 2017, Science.

[4]  L. Tan,et al.  Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures. , 2017, ACS nano.

[5]  L. Cavallo,et al.  Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. , 2017, ACS nano.

[6]  X. Bai,et al.  The Mechanistic Insights into the 2H‐1T Phase Transition of MoS2 upon Alkali Metal Intercalation: From the Study of Dynamic Sodiation Processes of MoS2 Nanosheets , 2017 .

[7]  Zhenhua Ni,et al.  Ultrafast Growth of High‐Quality Monolayer WSe2 on Au , 2017, Advanced materials.

[8]  Hua Zhang,et al.  Ultrathin Two‐Dimensional Multinary Layered Metal Chalcogenide Nanomaterials , 2017, Advanced materials.

[9]  Hua Yu,et al.  Argon Plasma Induced Phase Transition in Monolayer MoS2. , 2017, Journal of the American Chemical Society.

[10]  R. Ruoff,et al.  Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. , 2017, Science Bulletin.

[11]  Weida Hu,et al.  Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure , 2017 .

[12]  A. Krasheninnikov,et al.  Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam: Insights from First-Principles Calculations. , 2017, The journal of physical chemistry letters.

[13]  Zhongfan Liu,et al.  Nickelocene‐Precursor‐Facilitated Fast Growth of Graphene/h‐BN Vertical Heterostructures and Its Applications in OLEDs , 2017, Advanced materials.

[14]  Biao Wang,et al.  Gate-Controlled BP-WSe2 Heterojunction Diode for Logic Rectifiers and Logic Optoelectronics. , 2017, Small.

[15]  Kenji Watanabe,et al.  Molecular Arrangement and Charge Transfer in C60/Graphene Heterostructures. , 2017, ACS nano.

[16]  Jinxiong Wu,et al.  Epitaxial Growth of Ternary Topological Insulator Bi2 Te2 Se 2D Crystals on Mica. , 2017, Small.

[17]  M. J. Moody,et al.  Low-Temperature Atomic Layer Deposition of MoS2 Films. , 2017, Angewandte Chemie.

[18]  J. Kong,et al.  Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer , 2017, Nano Research.

[19]  E. Kaxiras,et al.  Properties of in-plane graphene/MoS2 heterojunctions , 2017, 1704.02669.

[20]  J. Coleman,et al.  All-printed thin-film transistors from networks of liquid-exfoliated nanosheets , 2017, Science.

[21]  P. Cao,et al.  Monolayer WxMo1−xS2 Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors , 2017 .

[22]  S. Koester,et al.  In‐Plane 2H‐1T′ MoTe2 Homojunctions Synthesized by Flux‐Controlled Phase Engineering , 2017, Advanced materials.

[23]  Jose L. Mendoza-Cortes,et al.  Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (WxMo1-xS2) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. , 2017, ACS nano.

[24]  X. Duan,et al.  Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals Heterostructures, and Patterned Arrays. , 2017, ACS nano.

[25]  C. David Wright,et al.  Role of Charge Traps in the Performance of Atomically Thin Transistors , 2017, Advanced materials.

[26]  M. Fuhrer,et al.  Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS2 Heterostructures. , 2017, ACS nano.

[27]  R. Hamers,et al.  Complex and Noncentrosymmetric Stacking of Layered Metal Dichalcogenide Materials Created by Screw Dislocations. , 2017, Journal of the American Chemical Society.

[28]  Weiwei Cai,et al.  Centimeter-Scale Nearly Single-Crystal Monolayer MoS2 via Self-Limiting Vapor Deposition Epitaxy , 2017 .

[29]  Haixin Chang,et al.  Tellurization Velocity-Dependent Metallic-Semiconducting-Metallic Phase Evolution in Chemical Vapor Deposition Growth of Large-Area, Few-Layer MoTe2. , 2017, ACS nano.

[30]  Zijing Ding,et al.  Chemical Stabilization of 1T' Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. , 2017, Journal of the American Chemical Society.

[31]  Yongsuk Choi,et al.  Ultraclean and Direct Transfer of a Wafer‐Scale MoS2 Thin Film onto a Plastic Substrate , 2017, Advanced materials.

[32]  K. Jiang,et al.  SWCNT‐MoS2‐SWCNT Vertical Point Heterostructures , 2017, Advanced materials.

[33]  Andreas Mittelberger,et al.  Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide , 2017, Scientific Reports.

[34]  X. Duan,et al.  Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures via Layer-Selected Atomic Substitution. , 2017, ACS nano.

[35]  Hai Xu,et al.  Controlled Growth of 1D MoSe2 Nanoribbons with Spatially Modulated Edge States. , 2017, Nano letters.

[36]  W. Lau,et al.  Nanopolygons of Monolayer MS2: Best Morphology and Size for HER Catalysis. , 2017, Nano letters.

[37]  L. Arava,et al.  Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis. , 2017, Journal of the American Chemical Society.

[38]  Chongwu Zhou,et al.  Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. , 2017, ACS nano.

[39]  Wei Liu,et al.  Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. , 2017, Journal of the American Chemical Society.

[40]  Sungjoo Lee,et al.  A homogeneous atomic layer MoS2(1-x)Se2x alloy prepared by low-pressure chemical vapor deposition, and its properties. , 2017, Nanoscale.

[41]  E. Reed,et al.  Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T', and 1T Phases: Tunable Properties of MoTe2 Films. , 2017, ACS nano.

[42]  Na Yeon Kim,et al.  Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene , 2016, Nano letters.

[43]  Peng Yu,et al.  Large‐Area and High‐Quality 2D Transition Metal Telluride , 2016, Advanced materials.

[44]  Jiang Tang,et al.  Synergistic Effect of Hybrid PbS Quantum Dots/2D‐WSe2 Toward High Performance and Broadband Phototransistors , 2017 .

[45]  Tianyi Zhang,et al.  Ultrasensitive Pressure Detection of Few‐Layer MoS2 , 2017, Advanced materials.

[46]  Tay-Rong Chang,et al.  Metal–Semiconductor Phase‐Transition in WSe2(1‐x)Te2x Monolayer , 2017, Advanced materials.

[47]  Jing Kong,et al.  Role of Molecular Sieves in the CVD Synthesis of Large‐Area 2D MoTe2 , 2017 .

[48]  T. Mueller,et al.  Photovoltaics in Van der Waals Heterostructures , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[49]  Weitao Yang,et al.  All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. , 2016, Journal of the American Chemical Society.

[50]  L. Gu,et al.  Temperature‐Mediated Selective Growth of MoS2/WS2 and WS2/MoS2 Vertical Stacks on Au Foils for Direct Photocatalytic Applications , 2016, Advanced materials.

[51]  Jinhua Ye,et al.  Targeted Synthesis of 2H‐ and 1T‐Phase MoS2 Monolayers for Catalytic Hydrogen Evolution , 2016, Advanced materials.

[52]  Yong Qin,et al.  Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology , 2016 .

[53]  Gerasimos Konstantatos,et al.  Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials , 2016 .

[54]  D. Muller,et al.  Large-scale chemical assembly of atomically thin transistors and circuits. , 2016, Nature nanotechnology.

[55]  Kang L. Wang,et al.  Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor. , 2016, Small.

[56]  A. Hirata,et al.  Unveiling Three-Dimensional Stacking Sequences of 1T Phase MoS2 Monolayers by Electron Diffraction. , 2016, ACS nano.

[57]  Jing Kong,et al.  Synthesis of High‐Quality Large‐Area Homogenous 1T′ MoTe2 from Chemical Vapor Deposition , 2016, Advanced materials.

[58]  Zaizhu Lou,et al.  In situ growth of WO3−xnanowires on g-C3N4nanosheets: 1D/2D heterostructures with enhanced photocatalytic activity , 2016 .

[59]  B. Sumpter,et al.  Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures. , 2016, Journal of the American Chemical Society.

[60]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[61]  Peng He,et al.  Integrated High-Performance Infrared Phototransistor Arrays Composed of Nonlayered PbS-MoS2 Heterostructures with Edge Contacts. , 2016, Nano letters.

[62]  H. Zhang,et al.  Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure , 2016 .

[63]  Jingyu Sun,et al.  Graphene/h‐BN Heterostructures: Graphene/h‐BN Heterostructures: Recent Advances in Controllable Preparation and Functional Applications (Adv. Energy Mater. 17/2016) , 2016 .

[64]  Thuc Hue Ly,et al.  Vertically Conductive MoS2 Spiral Pyramid , 2016, Advanced materials.

[65]  Heejun Yang Phase Engineering of Transition-Metal Dichalcogenides , 2016 .

[66]  Yongtao Li,et al.  Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. , 2016, ACS nano.

[67]  P. Ajayan,et al.  Spiral Growth of SnSe2 Crystals by Chemical Vapor Deposition , 2016 .

[68]  Feng Wang,et al.  Configuration‐Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe2/MoS2 , 2016 .

[69]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[70]  M. Arnold,et al.  Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy. , 2016, ACS nano.

[71]  Chel-Jong Choi,et al.  Wafer‐Scale, Homogeneous MoS2 Layers on Plastic Substrates for Flexible Visible‐Light Photodetectors , 2016, Advanced materials.

[72]  Hui‐Ming Cheng,et al.  Unique Domain Structure of Two-Dimensional α-Mo2C Superconducting Crystals. , 2016, Nano letters.

[73]  P. Taheri,et al.  Air-Stable n-Doping of WSe2 by Anion Vacancy Formation with Mild Plasma Treatment. , 2016, ACS nano.

[74]  Jeffery G Saven,et al.  Scalable Production of Molybdenum Disulfide Based Biosensors. , 2016, ACS nano.

[75]  Lai-Peng Ma,et al.  Electric Field Tunable Interlayer Relaxation Process and Interlayer Coupling in WSe2/Graphene Heterostructures , 2016 .

[76]  Moon J. Kim,et al.  Large-Area Deposition of MoS2 by Pulsed Laser Deposition with In Situ Thickness Control. , 2016, ACS nano.

[77]  Zhuhua Zhang,et al.  Topochemistry of Bowtie- and Star-Shaped Metal Dichalcogenide Nanoisland Formation. , 2016, Nano letters.

[78]  Liming Xie,et al.  Au-Modified Monolayer MoS2 Sensor for DNA Detection , 2016 .

[79]  J. Warner,et al.  Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2. , 2016, ACS nano.

[80]  N. Xu,et al.  Monolayer MoS2 Dendrites on a Symmetry‐Disparate SrTiO3 (001) Substrate: Formation Mechanism and Interface Interaction , 2016 .

[81]  Chongwu Zhou,et al.  High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions. , 2016, ACS nano.

[82]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[83]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[84]  J. Warner,et al.  Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. , 2016, ACS nano.

[85]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[86]  P. Ajayan,et al.  Synthesis of Millimeter‐Scale Transition Metal Dichalcogenides Single Crystals , 2016 .

[87]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[88]  M. Lorke,et al.  Two-Dimensional Heterojunctions from Nonlocal Manipulations of the Interactions. , 2016, Nano letters.

[89]  Jianbo Yin,et al.  Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid. , 2016, Nano letters.

[90]  A. Hirata,et al.  Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps , 2016, Scientific Reports.

[91]  J. Eom,et al.  Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering. , 2016, Nanoscale.

[92]  Dong Jae Kim,et al.  Alloyed 2D Metal-Semiconductor Atomic Layer Junctions. , 2016, Nano letters.

[93]  A. Javey,et al.  Near-Unity Photoluminescence Quantum Yield in MoS 2 by Organic Superacid , 2016 .

[94]  Hua Yu,et al.  Gate tunable WSe2-BP van der Waals heterojunction devices. , 2016, Nanoscale.

[95]  Jingyu Sun,et al.  Morphological Engineering of CVD‐Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution , 2016, Advanced materials.

[96]  Yeonwoong Jung,et al.  One-Step Synthesis of MoS₂/WS₂ Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films. , 2016, ACS nano.

[97]  Cees Dekker,et al.  Graphene nanodevices for DNA sequencing. , 2016, Nature nanotechnology.

[98]  M. Li,et al.  Fabrication of MgFe2O4/MoS2 Heterostructure Nanowires for Photoelectrochemical Catalysis. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[99]  S. Dhar,et al.  Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties , 2016 .

[100]  Yan Liu,et al.  Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. , 2016, ACS nano.

[101]  Yang‐Kook Sun,et al.  Direct Growth of MoS₂/h-BN Heterostructures via a Sulfide-Resistant Alloy. , 2016, ACS nano.

[102]  Yunseok Kim,et al.  Room Temperature Semiconductor-Metal Transition of MoTe2 Thin Films Engineered by Strain. , 2016, Nano letters.

[103]  Wei Zhou,et al.  Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure. , 2016, Nano letters.

[104]  H. Kuo,et al.  Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. , 2016, ACS nano.

[105]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[106]  Yanfeng Zhang All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS2/Graphene Heterostructures. , 2016 .

[107]  J. M. Kikkawa,et al.  Monolayer Single-Crystal 1 T ′-MoTe 2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization , 2016 .

[108]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.

[109]  Jing Zhao,et al.  Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2. , 2015, Journal of the American Chemical Society.

[110]  Y. Bando,et al.  Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors , 2015, Advanced materials.

[111]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[112]  A Gholinia,et al.  WSe₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. , 2015, Nano letters.

[113]  P. Ajayan,et al.  Spectroscopic Signatures of AA' and AB Stacking of Chemical Vapor Deposited Bilayer MoS2. , 2015, ACS nano.

[114]  J. Johns,et al.  Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS2 and WS2. , 2015, Journal of the American Chemical Society.

[115]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[116]  H. Jeong,et al.  Chemical Vapor Deposition of Large‐Sized Hexagonal WSe2 Crystals on Dielectric Substrates , 2015, Advanced materials.

[117]  Kai Xu,et al.  Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. , 2015, Nano letters.

[118]  M. Dresselhaus,et al.  Synthesis of large-area multilayer hexagonal boron nitride for high material performance , 2015, Nature Communications.

[119]  A. Javey,et al.  Oriented Growth of Gold Nanowires on MoS2 , 2015 .

[120]  P. Ajayan,et al.  Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.

[121]  Tongtong Jiang,et al.  CVD synthesis of Mo((1-x))W(x)S2 and MoS(2(1-x))Se(2x) alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. , 2015, Nanoscale.

[122]  G. Yi,et al.  Catalyst-free growth of InAs|[sol]|InxGa1|[minus]|xAs coaxial nanorod heterostructures on graphene layers using molecular beam epitaxy , 2015 .

[123]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[124]  H. Ago,et al.  Vertical heterostructures of MoS2 and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors. , 2015, Physical chemistry chemical physics : PCCP.

[125]  X. Gong,et al.  Molybdenum Disulfide: Kinetic Nature of Grain Boundary Formation in As‐Grown MoS2 Monolayers (Adv. Mater. 27/2015) , 2015 .

[126]  M. Ge,et al.  Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices. , 2015, ACS nano.

[127]  Hua Xu,et al.  Growth of MoS(2(1-x))Se(2x) (x = 0.41-1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. , 2015, ACS nano.

[128]  Y. Nishi,et al.  Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures. , 2015, ACS nano.

[129]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[130]  Mingyuan Ge,et al.  Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. , 2015, Advanced materials.

[131]  Yu Lin Zhong,et al.  Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. , 2015, ACS nano.

[132]  Lain‐Jong Li,et al.  Graphite edge controlled registration of monolayer MoS2 crystal orientation , 2015 .

[133]  C. Sow,et al.  Atomic healing of defects in transition metal dichalcogenides. , 2015, Nano letters.

[134]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[135]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[136]  Kenji Watanabe,et al.  Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. , 2015, Nano letters.

[137]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[138]  Jingyu Sun,et al.  Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures , 2015, Nature Communications.

[139]  Zhongfan Liu,et al.  Substrate Facet Effect on the Growth of Monolayer MoS2 on Au Foils. , 2015, ACS nano.

[140]  Zhongfan Liu,et al.  Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method , 2015, Nature Communications.

[141]  Xiaoshuang Chen,et al.  Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS2 , 2015 .

[142]  Moon J. Kim,et al.  Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. , 2015, ACS nano.

[143]  Zhongfan Liu,et al.  Monolayer MoS2 Growth on Au Foils and On‐Site Domain Boundary Imaging , 2015 .

[144]  Yun Hee Jang,et al.  Layer-controlled CVD growth of large-area two-dimensional MoS2 films. , 2015, Nanoscale.

[145]  Xiaolong Zou,et al.  An open canvas--2D materials with defects, disorder, and functionality. , 2015, Accounts of chemical research.

[146]  P. Ajayan,et al.  Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. , 2015, Accounts of chemical research.

[147]  Andras Kis,et al.  Single-layer MoS2 electronics. , 2015, Accounts of chemical research.

[148]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[149]  X. Duan,et al.  Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers , 2014, Nano letters.

[150]  P. Ajayan,et al.  Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions. , 2014, Nano letters.

[151]  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature communications.

[152]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[153]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[154]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[155]  Cengiz S. Ozkan,et al.  Wafer Scale Synthesis and High Resolution Structural Characterization of Atomically Thin MoS2 Layers , 2014 .

[156]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[157]  Harish Bhaskaran,et al.  Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition , 2014 .

[158]  Su-Huai Wei,et al.  Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors , 2014 .

[159]  Lin Xu,et al.  Nanowire electrodes for electrochemical energy storage devices. , 2014, Chemical reviews.

[160]  G. Ozin,et al.  Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. , 2014, Journal of the American Chemical Society.

[161]  J. Warner,et al.  Controlling sulphur precursor addition for large single crystal domains of WS2. , 2014, Nanoscale.

[162]  Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2 , 2014, ACS nano.

[163]  Ana Laura Elías,et al.  Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers , 2014 .

[164]  Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. , 2014, Nature communications.

[165]  M. Seong,et al.  Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers , 2014, Nano Research.

[166]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[167]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[168]  Jingyu Sun,et al.  Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications. , 2014, ACS nano.

[169]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[170]  A. Pan Growth of Alloy MoS2xSe2(1—x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. , 2014 .

[171]  Lain‐Jong Li,et al.  Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation , 2014, Advanced materials.

[172]  Wang Yao,et al.  Lateral heterojunctions within monolayer semiconductors , 2014 .

[173]  Jing Zhang,et al.  Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain sizes. , 2014, ACS nano.

[174]  Zhixian Zhou,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[175]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[176]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[177]  Ying-Sheng Huang,et al.  Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. , 2014, Nature nanotechnology.

[178]  T. Heinz,et al.  Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. , 2014, ACS nano.

[179]  Byung-Sung Kim,et al.  Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium , 2014, Science.

[180]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[181]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[182]  Arnold Burger,et al.  Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. , 2014, Nature nanotechnology.

[183]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[184]  Biao Xu,et al.  A 1D/2D helical CdS/ZnIn2 S4 nano-heterostructure. , 2014, Angewandte Chemie.

[185]  J. Tour,et al.  Chemical vapor deposition of graphene single crystals. , 2014, Accounts of chemical research.

[186]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[187]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[188]  J. Idrobo,et al.  Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges , 2014, Science.

[189]  K. Loh,et al.  Face-to-face transfer of wafer-scale graphene films , 2013, Nature.

[190]  Kai Yan,et al.  Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. , 2014, ACS nano.

[191]  Weitao Yang,et al.  Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. , 2013, Nano letters.

[192]  P. Ajayan,et al.  Metallic 1 T phase source / drain electrodes for field effect transistors from chemical vapor deposited MoS 2 , 2014 .

[193]  Hui‐Ming Cheng,et al.  Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition , 2013, Proceedings of the National Academy of Sciences.

[194]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[195]  Jani Kivioja,et al.  Ultrafast graphene oxide humidity sensors. , 2013, ACS nano.

[196]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[197]  L. Lauhon,et al.  Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode , 2013, Proceedings of the National Academy of Sciences.

[198]  X. Lou,et al.  Defect‐Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution , 2013, Advanced materials.

[199]  Chongwu Zhou,et al.  Aligned carbon nanotubes: from controlled synthesis to electronic applications. , 2013, Nanoscale.

[200]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[201]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[202]  Sheng Wang,et al.  Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition , 2013, Nature Communications.

[203]  P. Maass,et al.  Colloquium: Cluster growth on surfaces : Densities, size distributions, and morphologies , 2013, 1402.7095.

[204]  Fei Meng,et al.  Screw dislocation driven growth of nanomaterials. , 2013, Accounts of chemical research.

[205]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[206]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[207]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[208]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[209]  James Hone,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[210]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[211]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[212]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[213]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[214]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[215]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[216]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[217]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[218]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[219]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[220]  Jiaqi Huang,et al.  Carbon-nanotube-array double helices. , 2010, Angewandte Chemie.

[221]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[222]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[223]  Chenghua Sun,et al.  Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process. , 2009, ACS nano.

[224]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[225]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[226]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[227]  F. Wypych,et al.  1T‐MoS2, A New Metallic Modification of Molybdenum Disulfide. , 1993 .