On occurrence of spectral edges for periodic operators inside the Brillouin zone
暂无分享,去创建一个
J. M. Harrison | J. Harrison | P. Kuchment | B. Winn | P. Kuchment | A. Sobolev | B. Winn | A. Sobolev | J. Harrison | AV Sobolev | Brian Winn
[1] B. Vainberg,et al. Laplace Operator in Networks of Thin Fibers: Spectrum Near the Threshold , 2007, 0704.2795.
[2] Konstantin Pankrashkin. Spectra of Schrödinger Operators on Equilateral Quantum Graphs , 2006 .
[3] S. Novikov. Two-dimensional Schrödinger operators in periodic fields , 1985 .
[4] W. D. Evans,et al. Fractals, trees and the Neumann Laplacian , 1993 .
[5] Jacob Rubinstein,et al. Variational Problems¶on Multiply Connected Thin Strips I:¶Basic Estimates and Convergence¶of the Laplacian Spectrum , 2001 .
[6] P. Kuchment. Floquet Theory for Partial Differential Equations , 1993 .
[7] B. Helffer,et al. Analyse semi-classique pour l'équation de Harper. II: Comportement semi-classique près d'un rationnel , 1990 .
[8] G. V. Chester,et al. Solid State Physics , 2000 .
[9] Mark Freidlin,et al. Markov Processes and Di+erential Equations: Asymptotic Problems , 1996 .
[10] Barry Simon,et al. Analytic properties of band functions , 1978 .
[11] Alexander Figotin,et al. Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..
[12] Alexander Figotin,et al. Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..
[13] B. Vainberg,et al. Transition from a network of thin fibers to the quantum graph: an explicitly solvable model , 2006, math-ph/0605037.
[14] Yoshimi Saito. Convergence of the Neumann Laplacian on shrinking domains , 2001 .
[15] W. D. Evans,et al. Neumann laplacians on domains and operators on associated trees , 2000 .
[16] F. Klopp,et al. Endpoints of the spectrum of periodic operators are generically simple , 2000 .
[17] L. Friedlander. ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT , 2002 .
[18] Scattering Solutions in Networks of Thin Fibers: Small Diameter Asymptotics , 2006, math-ph/0609021.
[19] Idempotent Semimodules,et al. Analysis of Operators on , 2007 .
[20] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[21] J. Rubinstein,et al. On multiply connected mesoscopic superconducting structures , 1997 .
[22] Alexander Figotin,et al. Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..
[23] P. Kuchment. The mathematics of photonic crystals , 2001 .
[24] G. Dell'Antonio,et al. Quantum graphs as holonomic constraints , 2006, math-ph/0603044.
[25] Spectral Convergence of Quasi-One-Dimensional Spaces , 2005, math-ph/0512081.
[26] Peter Kuchment,et al. Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs , 1999, Exp. Math..
[27] Steven G. Johnson,et al. Photonic Crystals: The Road from Theory to Practice , 2001 .
[28] Fan Chung,et al. Spectral Graph Theory , 1996 .
[29] Steven J. Cox,et al. Maximizing Band Gaps in Two-Dimensional Photonic Crystals , 1999, SIAM J. Appl. Math..
[30] P. Kuchment. Graph models for waves in thin structures , 2002 .
[31] Steven G. Johnson,et al. Photonic Crystals: Molding the Flow of Light , 1995 .
[32] Tosio Kato. Perturbation theory for linear operators , 1966 .
[33] J. Rubinstein,et al. Spectral and variational problems on multiconnected strips , 1997 .
[34] Yoshimi Saito. The limiting equation for Neumann Laplacians on shrinking domains , 2000 .
[35] J. Rubinstein,et al. Asymptotics for thin superconducting rings , 1998 .
[36] P. Kuchment. Quantum graphs: I. Some basic structures , 2004 .
[37] B. Pavlov,et al. Analysis of the dispersion equation for the Schrödinger operator on periodic metric graphs , 2004 .
[38] Pavel Exner,et al. Convergence of spectra of graph-like thin manifolds , 2005 .
[39] Peter Kuchment,et al. Convergence of Spectra of Mesoscopic Systems Collapsing onto a Graph , 2001 .
[40] J. Selden. Periodic Operators in High-Contrast Media and the Integrated Density of States Function , 2005 .
[41] P. Kuchment,et al. BANACH BUNDLES AND LINEAR OPERATORS , 1975 .
[42] R. Hempel,et al. Spectral properties of periodic media in the large coupling limit , 1999 .
[43] B. Helffer,et al. Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) , 1988 .
[44] P. Kuchment,et al. Asymptotic methods for thin high-contrast two-dimensional PBG materials , 1999 .
[45] Mark Freidlin,et al. Diffusion Processes on Graphs and the Averaging Principle , 1993 .
[46] Band spectra of rectangular graph superlattices. , 1995, Physical review. B, Condensed matter.
[47] Francis Nier,et al. The Mourre Theory for Analytically Fibered Operators , 1998 .
[48] On the Structure of Eigenfunctions Corresponding to Embedded Eigenvalues of Locally Perturbed Periodic Graph Operators , 2005, math-ph/0511084.
[49] Mark Freidlin,et al. Markov processes and differential equations , 1996 .
[50] On the Spectra of Carbon Nano-Structures , 2006, math-ph/0612021.
[51] Peter Kuchment,et al. Differential Operators on Graphs and Photonic Crystals , 2002, Adv. Comput. Math..
[52] Peter Kuchment. Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2005 .
[53] E. Wigner,et al. Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals , 1936 .
[54] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[55] M. Wegener,et al. Periodic nanostructures for photonics , 2007 .
[56] Rachel J. Steiner,et al. The spectral theory of periodic differential equations , 1973 .
[57] Steven J. Cox,et al. Band Structure Optimization of Two-Dimensional Photonic Crystals in H-Polarization , 2000 .
[58] M. M. Skriganov,et al. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , 1987 .
[59] Yves Colin de Verdière. Sur les singularités de van Hove génériques , 1991 .
[60] P. Duclos,et al. CURVATURE-INDUCED BOUND STATES IN QUANTUM WAVEGUIDES IN TWO AND THREE DIMENSIONS , 1995 .
[61] J. Rubinstein,et al. Variational Problems¶on Multiply Connected Thin Strips II:¶Convergence of the Ginzburg-Landau , 2001 .
[62] B. Santo,et al. Solid State , 2012 .
[63] Peter Kuchment,et al. Asymptotics of spectra of Neumann Lapla-cians in thin domains , 2003 .