On occurrence of spectral edges for periodic operators inside the Brillouin zone

The paper discusses the following frequently arising question on the spectral structure of periodic operators of mathematical physics (e.g., Schrodinger, Maxwell, waveguide operators, etc). Is it true that one can obtain the correct spectrum by using the values of the quasimomentum running over the boundary of the (reduced) Brillouin zone only, rather than the whole zone? Or, do the edges of the spectrum occur necessarily at the set of 'corner' high symmetry points? This is known to be true in 1D, while no apparent reasons exist for this to be happening in higher dimensions. In many practical cases, though, this appears to be correct, which sometimes leads to the claims that this is always true. There seems to be no definite answer in the literature, and one encounters different opinions about this problem in the community. In this paper, starting with simple discrete graph operators, we construct a variety of convincing multiply-periodic examples showing that the spectral edges might occur deeply inside the Brillouin zone. On the other hand, it is also shown that in a 'generic' case, the situation of spectral edges appearing at high symmetry points is stable under small perturbations. This explains to some degree why in many (maybe even most) practical cases the statement still holds.

[1]  B. Vainberg,et al.  Laplace Operator in Networks of Thin Fibers: Spectrum Near the Threshold , 2007, 0704.2795.

[2]  Konstantin Pankrashkin Spectra of Schrödinger Operators on Equilateral Quantum Graphs , 2006 .

[3]  S. Novikov Two-dimensional Schrödinger operators in periodic fields , 1985 .

[4]  W. D. Evans,et al.  Fractals, trees and the Neumann Laplacian , 1993 .

[5]  Jacob Rubinstein,et al.  Variational Problems¶on Multiply Connected Thin Strips I:¶Basic Estimates and Convergence¶of the Laplacian Spectrum , 2001 .

[6]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[7]  B. Helffer,et al.  Analyse semi-classique pour l'équation de Harper. II: Comportement semi-classique près d'un rationnel , 1990 .

[8]  G. V. Chester,et al.  Solid State Physics , 2000 .

[9]  Mark Freidlin,et al.  Markov Processes and Di+erential Equations: Asymptotic Problems , 1996 .

[10]  Barry Simon,et al.  Analytic properties of band functions , 1978 .

[11]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..

[12]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[13]  B. Vainberg,et al.  Transition from a network of thin fibers to the quantum graph: an explicitly solvable model , 2006, math-ph/0605037.

[14]  Yoshimi Saito Convergence of the Neumann Laplacian on shrinking domains , 2001 .

[15]  W. D. Evans,et al.  Neumann laplacians on domains and operators on associated trees , 2000 .

[16]  F. Klopp,et al.  Endpoints of the spectrum of periodic operators are generically simple , 2000 .

[17]  L. Friedlander ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT , 2002 .

[18]  Scattering Solutions in Networks of Thin Fibers: Small Diameter Asymptotics , 2006, math-ph/0609021.

[19]  Idempotent Semimodules,et al.  Analysis of Operators on , 2007 .

[20]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[21]  J. Rubinstein,et al.  On multiply connected mesoscopic superconducting structures , 1997 .

[22]  Alexander Figotin,et al.  Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..

[23]  P. Kuchment The mathematics of photonic crystals , 2001 .

[24]  G. Dell'Antonio,et al.  Quantum graphs as holonomic constraints , 2006, math-ph/0603044.

[25]  Spectral Convergence of Quasi-One-Dimensional Spaces , 2005, math-ph/0512081.

[26]  Peter Kuchment,et al.  Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs , 1999, Exp. Math..

[27]  Steven G. Johnson,et al.  Photonic Crystals: The Road from Theory to Practice , 2001 .

[28]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[29]  Steven J. Cox,et al.  Maximizing Band Gaps in Two-Dimensional Photonic Crystals , 1999, SIAM J. Appl. Math..

[30]  P. Kuchment Graph models for waves in thin structures , 2002 .

[31]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[32]  Tosio Kato Perturbation theory for linear operators , 1966 .

[33]  J. Rubinstein,et al.  Spectral and variational problems on multiconnected strips , 1997 .

[34]  Yoshimi Saito The limiting equation for Neumann Laplacians on shrinking domains , 2000 .

[35]  J. Rubinstein,et al.  Asymptotics for thin superconducting rings , 1998 .

[36]  P. Kuchment Quantum graphs: I. Some basic structures , 2004 .

[37]  B. Pavlov,et al.  Analysis of the dispersion equation for the Schrödinger operator on periodic metric graphs , 2004 .

[38]  Pavel Exner,et al.  Convergence of spectra of graph-like thin manifolds , 2005 .

[39]  Peter Kuchment,et al.  Convergence of Spectra of Mesoscopic Systems Collapsing onto a Graph , 2001 .

[40]  J. Selden Periodic Operators in High-Contrast Media and the Integrated Density of States Function , 2005 .

[41]  P. Kuchment,et al.  BANACH BUNDLES AND LINEAR OPERATORS , 1975 .

[42]  R. Hempel,et al.  Spectral properties of periodic media in the large coupling limit , 1999 .

[43]  B. Helffer,et al.  Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) , 1988 .

[44]  P. Kuchment,et al.  Asymptotic methods for thin high-contrast two-dimensional PBG materials , 1999 .

[45]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[46]  Band spectra of rectangular graph superlattices. , 1995, Physical review. B, Condensed matter.

[47]  Francis Nier,et al.  The Mourre Theory for Analytically Fibered Operators , 1998 .

[48]  On the Structure of Eigenfunctions Corresponding to Embedded Eigenvalues of Locally Perturbed Periodic Graph Operators , 2005, math-ph/0511084.

[49]  Mark Freidlin,et al.  Markov processes and differential equations , 1996 .

[50]  On the Spectra of Carbon Nano-Structures , 2006, math-ph/0612021.

[51]  Peter Kuchment,et al.  Differential Operators on Graphs and Photonic Crystals , 2002, Adv. Comput. Math..

[52]  Peter Kuchment Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2005 .

[53]  E. Wigner,et al.  Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals , 1936 .

[54]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[55]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[56]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[57]  Steven J. Cox,et al.  Band Structure Optimization of Two-Dimensional Photonic Crystals in H-Polarization , 2000 .

[58]  M. M. Skriganov,et al.  Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , 1987 .

[59]  Yves Colin de Verdière Sur les singularités de van Hove génériques , 1991 .

[60]  P. Duclos,et al.  CURVATURE-INDUCED BOUND STATES IN QUANTUM WAVEGUIDES IN TWO AND THREE DIMENSIONS , 1995 .

[61]  J. Rubinstein,et al.  Variational Problems¶on Multiply Connected Thin Strips II:¶Convergence of the Ginzburg-Landau , 2001 .

[62]  B. Santo,et al.  Solid State , 2012 .

[63]  Peter Kuchment,et al.  Asymptotics of spectra of Neumann Lapla-cians in thin domains , 2003 .